Search for the Lepton Flavour Violating decays $B^0 \rightarrow e^{\pm}\mu^{\mp}$ and $B_s^0 \rightarrow e^{\pm}\mu^{\mp}$ with LHCb Run 2 data

S. Schulte, R. Quagliani, F. Blanc, O. Schneider

École Polytechnique Fédérale de Lausanne

SPS annual meeting

28.06.2022

The LHCb experiment

- Asymmetric forward spectrometer ($2 < \eta < 5$) \rightarrow designed for b and c physics
- excellent vertex, mass and momentum resolution
- very good particle identification
- recorded integrated luminosity: \rightarrow Run 1: 3 23 fb⁻¹
 - \rightarrow Run 1: 3.23 fb
 - \rightarrow Run 2: 5.85 fb $^{-1}$

Search for $B^0_{(s)} \rightarrow e^{\pm} \mu^{\mp}$

Search for Lepton Flavour Violating decays

- Lepton flavour violation (LFV)
 - \rightarrow observation of neutrino oscillations implies LFV
 - \rightarrow not observed in the charged lepton sector
- Search for forbidden b-hadron decays in the SM (e.g. $ightarrow e\mu,
 ightarrow e au)$
 - \rightarrow Standard Model branching fraction is $< 10^{-50}$
 - \rightarrow can be enhanced by new mediating particles up to 10^{-11}
 - \rightarrow several theoretical models predict LFV (leptoquraks , new gauge boson Z', Higgs doublets) [1,2,3,4]

[1] D. Bečirević et al, Phys. Rev. D 94, 11502

- [2] I.de Medeiros Varzieles et al, JHEP 06 (2015) 072
- [3] A. Crivellin et al, Phys.Rev.D 92 (2015) 5, 054013
- [4] R.A. Diaz et al, Eur.Phys.J.C 46 (2006) 403-405

Links to Lepton Flavour Universality

• Lepton flavour universality (LFU)

 \rightarrow scenarios opened by recent hints of LFU anomalies [1,2,3]

 \rightarrow links in some models between LFU and LFV [4,5]

$$\begin{split} R_{K} &= \frac{\mathcal{B}(B \to K\mu^{+}\mu^{-})}{\mathcal{B}(B \to Ke^{+}e^{-})} \\ \mathcal{B} \to K\mu^{\pm}e^{\mp} \sim 3 \cdot 10^{-8} (\frac{1-R_{K}}{0.23})^{2} \\ \mathcal{B} \to K(e^{\pm},\mu^{\pm})\tau^{\mp} \sim 2 \cdot 10^{-8} (\frac{1-R_{K}}{0.23})^{2} \\ \frac{\mathcal{B}(B_{s} \to \tau^{+}(e^{-},\mu^{-})}{\mathcal{B}(B_{s} \to \mu^{+}\mu^{-})_{SM}} \sim 4(\frac{1-R_{K}}{0.23})^{2} \\ \frac{\mathcal{B}(B_{s} \to \mu^{+}e^{-})}{\mathcal{B}(B_{s} \to \mu^{+}\mu^{-})_{SM}} \sim 0.01(\frac{1-R_{K}}{0.23})^{2} \end{split}$$

[1] LHCb collaboration, Phys.Rev Lett.115, 111803
 [2] LHCb collaboration, JHEP 08 (2017) 055
 [3] LHCb collaboration, Phys. Rev. Lett. 113, 151601
 [4] G. Hiller et al, arXiv: 1609.08895v2
 [5] S.L. Glashow et al, Phys. Rev. Lett. 114, 091801

Introductio

Search for
$$\mathsf{B}^0_{(s)} o e^{\pm} \mu^{\mp}$$

- Electrons produce bremsstrahlung
 - \rightarrow imperfect bremsstrahlung recovery
 - \rightarrow bremsstrahlung categories for $B \rightarrow e \mu :$ 0 $\gamma,$ 1 γ
- Current limits at 90(95) % CL (Run 1) $\rightarrow \mathcal{B}(B_s \rightarrow e^{\pm}\mu^{\mp}) < 6.0(7.2) \times 10^{-9}$ $\rightarrow \mathcal{B}(B \rightarrow e^{\pm}\mu^{\mp}) < 0.9(1.2) \times 10^{-9}$

LHCb collaboration, JHEP 03 (2018) 078

• Run 2 analysis: 2016 + 2017 + 2018

 \rightarrow can expect factor ${\sim}2$ improvement from statistics

Analysis strategy

• Measure ${\cal B}(B^0_{(s)} o e^\pm\mu^\mp)$ with respect to ${\sf B}^+ o J/\psi(o\mu^+\mu^-){\cal K}^+$

$$\begin{array}{ll} \mathcal{B}(B^0_{(s)} \to e^{\pm} \mu^{\mp}) &= \frac{f_u}{f_{d(s)}} &\times & \mathcal{B}(B^+ \to J/\psi(\to \mu^+\mu^-)K^+) \\ &\times & \frac{\mathcal{N}(B^0_{(s)} \to e^{\pm} \mu^{\mp})}{\mathcal{N}(B^+ \to J/\psi(\to \mu^+\mu^-)K^+)} \\ &\times & \frac{\varepsilon(B^+ \to J/\psi(\to \mu^+\mu^-)K^+)}{\varepsilon(B^0_{(s)} \to e^{\pm} \mu^{\mp})} \end{array}$$

• Validation of the efficiency corrections checking $r_{J/\psi} = 1$ in bremsstrahlungs categories

$$\begin{aligned} \mathbf{r}_{J/\Psi} &= \frac{\mathcal{B}(B^+ \to J/\psi(\to \mu^+ \mu^-)K^+)}{\mathcal{B}(B^+ \to J/\psi(\to e^+ e^-)K^+)} \\ &= \frac{\mathcal{N}(B^+ \to J/\psi(\to \mu^+ \mu^-)K^+)}{\mathcal{N}(B^+ \to J/\psi(\to e^+ e^-)K^+)} \times \frac{\varepsilon(B^+ \to J/\psi(\to e^+ e^-)K^+)}{\varepsilon(B^+ \to J/\psi(\to \mu^+ \mu^-)K^+)} \\ &= 1 \end{aligned}$$

Analysis workflow

1. Selection

- Stripping, offline and trigger selection
- PID to remove physics background
- MVA to remove combinatorial background

2. Determine and correct for selection efficiency

- Correct for tracking, PID, LO and B kinematics
- Use $B^+ o J/\psi(\mu^+\mu^-)K^+$ and $B^+ o J/\psi(e^+e^-)K^+$ as control and calibration modes
- 3. Determine $\mathcal{B}(B^0 \to e^{\pm} \mu^{\mp})$ and $\mathcal{B}(B^0_s \to e^{\pm} \mu^{\mp})$
 - Simultaneous fit of the $e\mu$ mass split by years and brem categories
 - Use $B^+
 ightarrow J/\psi(\mu^+\mu^-)K^+$ as normalisation channel

4. Derive the limits for the branching fractions

Selection

Pre-selection

- use dedicated pre-selection selections for our signal and normalisation channels
- Fiducial cuts, chosen to align with calibration samples acceptance, few examples: $\rightarrow p_T(\mu) > 0.8 \text{ GeV}, p_T(e) > 0.5 \text{ GeV}, IP\chi^2(e) > 25, p(e,\mu) < 200 \text{ GeV}.$
- trigger on single electron or signal muon candidate, require good tracks and use decay topology

Particle Identification PID

- Criteria to reduce and remove physics background $(e_{\rightarrow K/\pi}, \mu_{\rightarrow K/\pi})$
- Main peaking backgrounds considered: 2-body hadronic decays $(B^0_{(s)} \rightarrow h^+ h^{'-} \text{ with } h^{(')} = \pi, K, p)$
- Also considered: $B^0 \to \pi \ell \nu$, $\Lambda_b \to p \ell \nu$, $\Lambda_b \to p K$ and $\Lambda_b \to p \pi$
 - ightarrow e : PIDe> -2 and MC15TuneV1ProbNNe> 0.8
 - $ightarrow \mu$: MC15TuneV1ProbNNmu> 0.4

2016

Multivariate Analysis

- Combinatorial background: two tracks associated to a common vertex
- Train a Boosted Decision Tree (BDT) to remove combinatorial background
- Chose discriminating variables that contain information of the topology, vertex quality and track isolation
 - \rightarrow e.g. the smallest of the lepton IPs with respect to the PV

BDT training

- Signal: efficiency corrected $B^0_{(s)}
 ightarrow e^{\pm} \mu^{\mp}$ simulation
- Background: sideband data
- Tested different sets of discriminating variables and algorithms
- Use a total of 14 discriminating variables
- Use cross validation (with k=5 folds) for training

28.0b.2022

ontrol mode and corrections to simulati

Fits to $B^+ o J/\psi(o \ell^+\ell^-) K^+$

• Simultaneous fit in 0 $\gamma,\,1\gamma$ and 2 γ categories in electron modes and muon mode

 1γ : only one electron has brem added 2γ : both electrons has brem added

- Floating $\pi \to K$ mis-ID rate shared between brems and e/μ mode.
- Fits used to validate w_{PID} & w_{L0} corrections measuring $r(J/\psi)$

Corrections

Efficiency corrections

- \bullet Selection efficiencies, ε , are taken from simulation
- Well known that the tracking, the PID and the L0 trigger response is badly modeled in simulation \rightarrow derive corrections with data driven methods

Kinematic corrections

- Observe discrepancies in the modelling of the B kinematics in simulation
- Train a BDT with the GBreweighter package to obtain corrections
- Corrections are obtained from $B^+ o J/\psi(o \mu^+\mu^-)K^+$ MC and sWeighted data
- $\bullet\,$ Port corrections to $B \to e^\pm \mu^\mp$ and $B \to J/\psi (e^+ e^-) {\cal K}^+$

 \rightarrow validate our corrections, by measuring $r_{J/\Psi}$

$r_{J/\Psi}$ cross check

- Validate corrections ($w_{TRK} \times w_{PID} \times w_{wL0} \times w_{wBKIN}$)
- Calculate $r_{J/\Psi}$ for two bremsstrahlungs categories: $0\gamma \ 1\gamma$

$$r_{J/\Psi} = \frac{\mathcal{B}(B^+ \to J/\psi(\to \mu^+ \mu^-)K^+)}{\mathcal{B}(B^+ \to J/\psi(\to e^+ e^-)K^+)} \\ = \frac{\mathcal{N}(B^+ \to J/\psi(\to \mu^+ \mu^-)K^+)}{\mathcal{N}(B^+ \to J/\psi(\to e^+ e^-)K^+)} \times \frac{\varepsilon(B^+ \to J/\psi(\to e^+ e^-)K^+)}{\varepsilon(B^+ \to J/\psi(\to \mu^+ \mu^-)K^+)} \\ = 1$$

year	Correction	$r_{J/\psi}(0\gamma)$	$r_{J/\psi}(1\gamma)$
2016	no corrections	1.14	1.29
2016	fully corrected	1.03	1.12
2017	no corrections	1.12	1.21
2017	fully corrected	1.01	1.06
2018	no corrections	1.20	1.31
2018	fully corrected	1.00	1.06

Invariant mass fit

Simultaneous fit of $m_{e\mu}^{DTF}$

• Model:

- $B^0 \rightarrow e^{\pm} \mu^{\mp}$: bifurcated DSCB
- $B^0_s
 ightarrow e^\pm \mu^\mp$: bifurcated DSCB
- Combinatorial: exponential
- Fit 6 datasets: 2 brem categories \times 3 years
- Branching fractions are shared between all categories

$$\mathcal{N}(B^{0}_{(s)} \to e^{\pm}\mu^{\mp})_{year,brem} = \frac{f_{d(s)}}{f_{u}} \times \frac{\varepsilon(B^{0}_{(s)} \to e^{\pm}\mu^{\mp})_{year,brem}}{\varepsilon(B^{+} \to J/\psi(\to \mu^{+}\mu^{-})K^{+})_{year}} \times \frac{\mathcal{B}(B^{0}_{(s)} \to e^{\pm}\mu^{\mp})}{\mathcal{B}(B^{+} \to J/\psi(\to \mu^{+}\mu^{-})K^{+})} \times \mathcal{N}(B^{+} \to J/\psi(\to \mu^{+}\mu^{-})K^{+})_{year}$$

Fit under bkg only hypothesis

Toys: generate from fits to data sidebands, and extrapolation over full fit range

Fit toy datasets

EPFL

14 / 15

Summary

So far:

- Full selection in place
 - offline, trigger and alignment selection finalised
 - BDT trained and optimised to suppress combinatorial background
- Implemented full correction to simulation (tracking, PID, L0 and B kinematics)
- $r_{J/\Psi}$ determined applying corrections
- Simultaneous fits to data and toy datasets

On-going:

- Sensitivity studies
- Background studies and validation using $B \rightarrow hh$ stripping output
- \bullet Systematics from ε and mass fits