## Multi-Ioop Scattering Amplitudes and Gravitational binary dynamics

Mao Zeng, Higgs Centre for Theoretical Physics, University of Edinburgh


## OUTLINE

1. Background - precision gravitational wave physics
2. Classical physics from quantum amplitudes
3. Modern methods for gravity amplitudes
4. Collider-inspired techniques for loop integration
5. Results \& comparisons

## Background

## DISCOVERIES OF OUR TIMES



Two fundamental discoveries of our times: Higgs boson (2012), gravitational waves (2015). Spectacular confirmation of SM / GR. Both experiments call for precision theory.

## DISCOVERIES OF OUR TIMES




LIGO \& VIRGO collaborations, arXiv:1602.03837

Two fundamental discoveries of our times: Higgs boson (2012), gravitational waves (2015). Spectacular confirmation of SM / GR. Both experiments call for precision theory.

- Cross-fertilization: scattering amplitudes, loop integrals, effective field theories


## LIGO-VIRGO-KAGRA O3B CATALOG (07 NOV 2021)

## Masses in the Stellar Graveyard



## LIGO-VIRGO-KAGRA O3B CATALOG (07 NOV 2021)



## FUTURE GW DETECTORS



## STAGES OF INSPIRAL WAVEFORMS



Inspiral Perturbative expansions: post-Newtonian (PN), post-Minkowskian (PM), self-force (SF), semi-analytic models

Merger Numerical relativity - first principles, but too slow to scan over large parameter space.

Ringdown Perturbative Quasi-normal modes.

## STAGES OF INSPIRAL WAVEFORMS

$$
\text { Inspiral } \longrightarrow \text { Merger } \longrightarrow \text { Ringdown }
$$



## NEED FOR (SEMI-) ANALYTIC CALCULATIONS

- NR simulations expensive. Example simuation covering entire signal: 8 months, few million CPU hours. [szilagyi et al. '15]
- 376 GW cycles at 1 point in parameter space. Zero spins, mass ratio 7.



## REQUIREMENTS FOR THEORY PRECISION



Need accurate waveform calculations: e.g. at 6th post-Newtonian, 2 nd-self force orders. Test GR, neutron star EOS, exotic objects...

## POST-NEWTONIAN (PN) EXPANSION

Joint expansion in $G M / r \sim v^{2}$, locked by Virial theorem.

Conservative Hamiltonian in c.o.m. frame:

$$
\begin{aligned}
m & =m_{A}+m_{B}, \quad \nu=\mu / m \\
\mu & =m_{A} m_{B} / m
\end{aligned}
$$



1PN, Einstein, Infeld, Hoffman, 1938

## POST-MINKOWSKIAN (PM) EXPANSION

- Expansion in coupling $G M / r$, exact velocity dependence [Bertotti, Kerr, Plebanski, Portilla, Westpfahl, Gollder, Bel, Damour, Derulle, Ibanez, Martin, Ledvinka, Scaefer, Bicak...]
- Most accurate PM binary dynamics until 2019 [Westpfahl, '85]

Scattering angle of two black holes, as function of $m_{1}, m_{2}, b, \sigma \equiv v_{1} \cdot v_{2}$,


2PM

- Similar to expansion in relativistic QFT - can QFT help push further? What functions appear at higher orders?


## NEW RESULTS FOR CONSERVATIVE DYNAMICS


$G^{6}\left(1+v^{2}+v^{4}+v^{6}+v^{8}+\ldots\right) \quad$ New results after $30+$ year hiatus.
[adapted from Mikhail Solon's slide]

## Classical from Quantum

## HOW QFT HELPS - (1) GAUGE INVARIANCE

GR has gauge redundancy: invariant under general coordinate transformations.
QFT amplitudes defined in asymptotic flat spacetime $t= \pm \infty$

- gauge invariant, reduces complexity.



## HOW QFT HELPS - (2) EFFECTIVE THEORIES

Hierarchy of scales in bound state systems: $R_{s} \leq r \leq \lambda \Longrightarrow$

Use Effective field theory [Goldberger, Rothstein, '04; Cheung, Rothstein, Solon, '18; Damgaard, Haddad, Helset, '19; Kalin, Porto, '20]


Operator expansion around point-particle limit.

## POINT PARTICLE EFFECTIVE FIELD THEORY



Massive particles (scalar field) coupled to gravity.

Lagrangian: $\quad S=S_{\text {Einstein-Hilbert }}+S_{\text {point-particle }}+S_{\text {finite-size }}$

Point-particle: scalar field in dynamic metric.

Finite-size (tidal) effect: highly suppressed for compact objects $\sim \mathcal{O}\left(G^{5}\right)$,
Even more so for black holes $\sim \mathcal{O}\left(G^{6}\right)$.

## CLASSICAL FROM QUANTUM: PITFALLS



Naive $\hbar$ expansion won't work. Intuition from JWKB: $\mathcal{M} \sim \exp \left(\frac{i}{\hbar} \int V(x) d x\right)$
$\Longrightarrow 1 / \hbar, 1 / \hbar^{2}, 1 / \hbar^{3} \ldots$ divergences in perturbative expansion

- referred to as super-classical or classically divergent


## EIKONAL EXPONENTIATION



Conservative amplitude, pure phase: $\tilde{\mathcal{M}}(b) \propto e^{i \delta(b)}$
[Glauber, '59; Levy, Sucher, '69; Soldate, '87; 't Hooft, '87; Amati, Ciafoloni, Veneziano, '87, '88, '90, '07; Muzinich, Soldate, '88; Kobat, Ortiz, '92 ...]

Huygens principle: scattering angle $\propto$ phase gradient $\frac{\partial \delta}{\partial b}$
$\tilde{\mathcal{M}}(b)$ : Fourier transform of momentum space $\mathcal{M}\left(q_{T}\right)$. Time delay: $\Delta t=\frac{\partial \delta}{\partial E}$.

## EIKONAL: KINEMATIC CORRECTIONS

- Eikonal impact parameter defined at closest approach.

[Figure: Bern, Ita, Parra-Martinez, Ruf, 2002.02459]
- All-order steepest descent argument: [Cristofoli, Gonzo, Moynihan, O'Connell, Ross, Sergola, White, '21]
- Alternative formulation: Radial Action $I_{r}$, used in [Bern, Parra-Martinez, Ruf, Shen, Solon, MZ, '21]

$$
\chi=\frac{\partial I_{r}}{\partial J}, \quad J \equiv \boldsymbol{p} \cdot \boldsymbol{b}
$$

- Also used with HEFT formulation: [Brandhuber, Chen, Travaglini, Wen, '21] Phase shift in partial wave scattering: [Kol, O'Connell, Telem, 2109.12092] Extensions to spin [Bern, Roiban, Luna, Shen, MZ, '20] and color charges [de Cruz, Luna, Scheopner, '21]


## CLASSICAL LIMIT OF QUANTUM OBSERVABLES

[Kosower, Maybe, O'Connel (KMOC), '18]

Compute expectation values of observables from S-matrix, compoton length $l_{c} \ll$ wave packet spread $l_{w} \ll$ impact parameter


Exact wavepacket shape unimportant for classical limit.

## CLASSICAL LIMIT OF QUANTUM OBSERVABLES

[Kosower, Maybe, O'Connel (KMOC), '18]
Heuristic: integrate amplitude $\mathcal{M}$ times momentum transfer observable $q^{\mu}$ against wavepacket $e^{i \boldsymbol{b} \cdot \boldsymbol{q}}$.

$\int d^{2} q_{T} \mathcal{M}(q) q^{\mu} e^{i \boldsymbol{b} \cdot \boldsymbol{q}} \sim \frac{\partial \tilde{\mathcal{M}}(b)}{\partial b} \quad$ Angle $\propto$ gradient again!

## FROM SCATTERING TO BOUND STATE

## Quantum <br> scattering



# Classical scattering 

e.g. scattering angle

## ??? <br> Classical bound states

e.g. perihelion advance

## FROM SCATTERING TO BOUND STATE



## MATCHING TO NON-RELATIVISTIC EFT

[Cheung, Rothstein, Solon, 1808.02489]

Lagrangian: two scalars, no antiparticles, no particle creation

$$
\begin{gathered}
\mathcal{L}=\sum_{i=1,2} \int_{\boldsymbol{k}} \phi_{i}^{\dagger}(-\boldsymbol{k})\left(i \partial_{t}-\sqrt{\boldsymbol{k}^{2}+m_{i}^{2}}\right) \phi_{i}(\boldsymbol{k})+\int_{\boldsymbol{k}, \boldsymbol{k}^{\prime}} V\left(\boldsymbol{k}, \boldsymbol{k}^{\prime}\right) \phi_{1}^{\dagger}\left(-\boldsymbol{k}^{\prime}\right) \phi_{2}^{\dagger}\left(\boldsymbol{k}^{\prime}\right) \phi_{1}(\boldsymbol{k}) \phi_{2}(-\boldsymbol{k}) \\
\text { kinetic term } \\
\text { 4-scalar contact potential }
\end{gathered}
$$



## MATCHING TO NON-RELATIVISTIC EFT

[Cheung, Rothstein, Solon, 1808.02489]
Fix potential from Matching: NR EFT amplitude = gravitational scalar amplitude.


EFT amplitude: extremely simple, Feynman diagrams (only bubble diagrams)
w/ dynamic gravitons


Gravity / matter amplitude: need sophisticated modern amplitude methods! See next slides.
$O\left(G^{3}\right) / 3$ 3PM conservative dynamics: [Bern, Cheung, Roiban, Shen, Solon, MZ, '19 (PRL, JHEP)].
$O\left(G^{4}\right) / 4 \mathrm{PM}:$ [Bern, Parra-Martinez, Roiban, Ruf, Shen, Solon, MZ, '21 (PRL)]
Generalization for spinning BHs: [Bern, Luna, Roiban, Shen, MZ, '20 (PRD)]

## Gravity Amplitudes

## PERTURBATIVE GRAVITY

Einstein-Hilbert action spacetime curvature

$$
S_{\mathrm{EH}}=\frac{1}{2 \kappa^{2}} \int d^{d} x \sqrt{-g} R, \quad \kappa \text { volume }, \quad \text { scalar }
$$

Expand around Minkowskian space: $g_{\mu \nu}=\eta_{\mu \nu}+\kappa h_{\mu \nu}$


## PERTURBATIVE GRAVITY



Leading non-linearity: ~100 terms in 3-graviton vertex! Quickly grows out of control.

Double copy \& Generalized Unitarity to the rescue

Double copy: gravity from $\mathrm{YM}^{2}$
Generalized Unitarity: Loops from trees

Alternative based on Feynman diagrams: Tuning nonlinear gauge fixing term:
[Cheung, Remmen, '16, '17; Rafie-Zinedine, '18]

## GRAVITY AMPLITUDES FROM YANG-MILLS

- Gravity $=(\text { Yang-Mills) })^{2} .3-$ point amplitude example:

- 4-points and above: generally a sum of $\mathrm{YM} \times \mathrm{YM}$ expressions.
- Early example: Kawai-Lewellen-Tye relations (string theory)
- Local Feynman diagram-like version: BCJ (Bern-Carrasco-Johansson) double copy.


## DOUBLE COPY / COLOR-KINEMATIC DUALITY

- D dimensions: easier to get nice analytic integrands from double copy [Bern, Carrasco, Johansson, '08]
- Simplest example: 4-gluon amplitude, with 4-point vertex "blown up" to 3-pt.


$$
C_{s}=f^{a b f} f^{c d f}, \quad C_{t}=f^{b c f} f^{d a f}, \quad C_{u}=f^{a f c} f^{d b f}
$$

Jacobi: $C_{s}+C_{t}+C_{u}=0$. Surprise: $n_{s}+n_{t}+n_{u}=0$.


Gravity: $\mathcal{M}_{4}=\left.\mathcal{A}_{4}\right|_{C_{i} \rightarrow n_{i}}=n_{s}^{2} / s+n_{t}^{2} / t+n_{u}^{2} / u$
Also applicable with massive scalars, by dimensional reduction.

HEFT double copy:
[Brandhuber, Chen, Travaglini,
Wen, '21]

## GENERALIZED UNITARITY

[Bern, Dixon, Dunbar, Kosower, '94. Britto, Cachazo, Feng, '04]
Optical theorem: Imaginary part of forward amplitude = product of two decay amplitudes


Generalized unitarity: Cutting with complex $l^{\mu}$.
Box diagram example: $l_{1}^{2}=l_{2}^{2}=l_{3}^{2}=l_{4}^{2}=0$.

Loop integrand factorizes into product of tree amplitudes.

## Importing collider methods

## CHALLENGES IN LOOP INTEGRATION

GW physics needs 3 loops and beyond, but exact evalulation is very difficult already at 2 loops: most results are for planar diagrams only, with $m_{1}=m_{2}$.


Smirnov, '01;
Henn, Smirnov, '13
Two-mass: Heller '21


Heinrich, Smirnov, '04
(only the $1 / \epsilon^{2}$ pole)


Leoni, Bianchi, '16; Kreer, Weinzierl, '21


Heller, von Manteuffel, Schabinger, 19; Broedel, Duhr, Dulat, Penante, Tancredi, '19


Duhr, Smirnov, Tancredi, '21

## METHOD OF REGIONS

Feynman integrals expanded at integrand level; sum over "regions" [Beneke, Smirnov, '98]


## Soft region:

$$
\left|k_{1}\right| \sim\left|k_{2}\right| \sim|q| \sim \frac{\hbar}{R} \ll m_{1}, m_{2}, \sqrt{s}
$$

## Kinematics:

$$
\begin{aligned}
& u_{1}^{2}=u_{2}^{2}=1, u_{1} \cdot q=u_{2} \cdot q=0 \\
& q^{2}=t, \quad u_{1} \cdot u_{2}=\sigma
\end{aligned}
$$

## Taylor-expanding matter propagators:

(1): $\left(k_{1}+p_{1}\right)^{2}-m_{1}^{2} \approx 2 m_{1} u_{1} \cdot k_{1}+i 0$
(2): $\left(k_{2}+p_{2}\right)^{2}-m_{2}^{2} \approx 2 m_{2} u_{2} \cdot k_{2}+i 0$

After Expansion in $t$, remaining nontrivial parameter $\sigma$.

## DIFFERENTIAL EQUATIONS [Kotikov; Bern, Dixon, Kosower; Remiddi; Gehrmann, Remiddi; Henn]

PN expansion
$q^{2} \ll(m v)^{2} \ll m^{2}$
differential equations
evolution w.r.t. kinematic variable (velocity)
consistency conditions:
cancellation of spurious singularities

PM expansion
$q^{2} \ll m^{2}, v \sim \mathcal{O}(1)$

Prolific method for cutting-edge collider amplitude. Imported into post-Minkowskian gravity:
[Parra-Martinez, Ruf, MZ, '20]. Already widely adopted: [Kalin, Porto, '20; Di Vecchia, Heissenberg, Russo, Veneziano, '21; Herrmann, Parra-Martinez, Ruf, MZ, '21; Bjerrum-Bohr, Damgaard, Plante, Vanhove, '21 ...]

Amplitude is a sum over "master integrals" by integration by parts: $\mathcal{M}=c_{i} I_{i}$
Kinematic derivatives also reduced to sum over master integrals themselves: $\frac{\partial}{\partial v} I_{i}=A_{i j} I_{j}$
$v=0$
$\partial / \partial v$

Near-static boundary conditions
"Post-Minkowskian": exact in velocity

## DIFFERENTIAL EQUATIONS



$$
u_{1}^{2}=u_{2}^{2}=1, u_{1} \cdot u_{2}=y=\sqrt{1+v^{2}} \quad \text { Rationalization: } y=\frac{1+x^{2}}{2 x}
$$

Physical region: $0<x<1 \quad$ Euclidean region: $-1<x<0$


The last letter only appears at 3 loops. For the potential region, smooth static limit implies that $(1-x)$ is never a first entry.

## BOUNDARY CONDITIONS - POTENTIAL REGION

- In the potential region, static boundary values of integrals are 3D spatial integrals - instantaneous post-Newtonian potential.

- 3D propagator integrals known to very high orders. Differential equations give velocity dependence (PM expansion) "for free".


## BOUNDARY CONDITIONS - DIVERGENCES

- Iterated graviton exchange creates divergent terms near the static limit.

- Not "genuine" higher-loop correction - can we skip evaluating these integrals?


## RADIAL ACTION MIRACLE

Bern, Parra-Martinez, Ruf, Shen, Solon, MZ, '21. HEFT version: Brandhuber, Chen, Travaglini, Wen, '21

- Remove divergences from boundary conditions, then solve DEs.

- Fourier transformed amplitude turns into a finite quantity, the radial action $I_{r}, \chi=\partial I_{r} / \partial J$.


## Results and Comparisons

## 3PM / 2-LOOP AMPLITUDE - EXAMPLE

[Bern, Cheung, Roiban, Shen, Solon, MZ, '19]


Traditional Feynman diagram: expect more than $10^{5}$ terms.

- 100 terms per 3-graviton vertex
- 3 terms per graviton-scalar vertex
- 3 terms per graviton propagator All multiplied together!

Gravity tree $=(\text { Yang-Mills tree })^{2}$ by KLT. Cut loop amplitude $=$ product of trees by generalized unitarity.

$$
\text { Cut } \left.=-i\left\{2 t^{2} m_{1}^{2} m_{2}^{4}+\frac{1}{t^{6}}\left[\operatorname{Tr}[\nmid \nmid \phi \phi 1 \nmid)^{4}\right]+(7 \leftrightarrow 8)\right]\right\}\left(\frac{1}{\left(k_{5}-k_{8}\right)^{2}}+\frac{1}{\left(k_{6}+k_{8}\right)^{2}}\right)
$$

Stay in 4D if you can - spinor helicity amplitudes are simple, though with spurious singularities.

## RESULT: 3PM CONSERVATIVE POTENTIAL

[Bern, Cheung, Roiban, Shen, Solon, MZ '19 (PRL)]


$$
\begin{aligned}
& H^{3 \mathrm{PM}}(\boldsymbol{p}, \boldsymbol{r})=\sqrt{\boldsymbol{p}^{2}+m_{1}^{2}}+\sqrt{\boldsymbol{p}^{2}+m_{2}^{2}}+V^{3 \mathrm{PM}}(\boldsymbol{p}, \boldsymbol{r}) \\
& V^{3 \mathrm{PM}}(\boldsymbol{p}, \boldsymbol{r})=c_{1}\left(\boldsymbol{p}^{2}\right)\left(\frac{G}{|\boldsymbol{r}|}\right)+c_{2}\left(\boldsymbol{p}^{2}\right)\left(\frac{G}{|\boldsymbol{r}|}\right)^{2}+c_{3}\left(\boldsymbol{p}^{2}\right)\left(\frac{G}{|\boldsymbol{r}|}\right)^{3}
\end{aligned}
$$

Westpfahl, '85
Our new result
Binding energy: improved agreement with numerical relativity over lower PM orders.
[Antonelli, Buonanno, Steinhoff, Vines, '19]

Higher orders needed to compete with PN theory. Next slides: our new result for 4PM!

## 4PM / 3-LOOP - POTENTIAL REGION

[Bern, Parra-Martinez, Roiban, Ruf, Shen, Solon, MZ, 2101.07254 (PRL)]

- Loop integrand from 8 generalized unitarity cuts.

- Boundary conditions in terms of 3D integrals

Contribute to elliptic integrals after solving DEs



## 3-LOOP AMPLITUDE [Bern, Parra-Martinez, Roiban, Ruf, Shen, Solon, Mz, 2101.07254 (PRL)]

$m_{2}$

An infrared divergence!

$$
\begin{aligned}
& \mathcal{M}_{4}(\boldsymbol{q})=G^{4} M^{7} \nu^{2}|\boldsymbol{q}|\left(\frac{\boldsymbol{q}^{2}}{4^{1 / 3} \tilde{\mu}^{2}}\right)^{-3 \epsilon} \pi^{2}\left[\mathcal{M}_{4}^{p}+\nu\left(\frac{\mathcal{M}_{4}^{t}}{\epsilon}+\mathcal{M}_{4}^{f}\right)\right]+\text { Iterations } \\
& M=m_{1}+m_{2} \\
& \nu=\frac{m_{1} m_{2}}{M^{2}}, \text { 1SF term vanishes in probe limit }
\end{aligned}
$$

$$
\frac{1}{r^{4}} \text { potential after 3D Fourier transform }
$$

$$
\begin{aligned}
\mathcal{M}_{4}^{\mathrm{p}}=-\frac{35\left(1-18 \sigma^{2}+33 \sigma^{4}\right)}{8\left(\sigma^{2}-1\right)}, & \mathcal{M}_{4}^{\mathrm{t}}=h_{1}+h_{2} \log \left(\frac{\sigma+1}{2}\right)+h_{3} \frac{\operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}} . \quad \sigma \equiv \frac{p_{1} \cdot p_{2}}{m_{1} m_{2}} \\
& h_{i} \text { are rational functions, see next slide }
\end{aligned}
$$

## 4PM BINDING ENERGY VS. NUMERICAL RELATIVITY

## [Khalil, Buonanno, Steinhoff, Vines, preliminary]

GW cycles before merger


## 4PM BINDING ENERGY VS. NUMERICAL RELATIVITY

[Khalil, Buonanno, Steinhoff, Vines, preliminary]

- Same plot shown as relative deviation from NR.

GW cycles before merger


- Post-Minksowskian prediction starts to become competitive - more to come!


## IR DIVERGENCE IN 2-BODY POTENTIAL



radiation region / far-zone
[Gally, Leibovich, Porto, Ross, '15]

Potential region: spatial momentum exchange between two bodies

$$
\mathcal{M}_{4}^{\mathrm{pot}}(\boldsymbol{q}) \propto\left[\frac{\mathcal{M}_{4}^{t}}{\epsilon}+\text { finite }\right]+\text { Iterations }
$$

Radiation region: couples to multipole moments of binary system

$$
\mathcal{M}_{4}^{\mathrm{rad}}(\boldsymbol{q}) \propto\left[-\frac{\mathcal{M}_{4}^{t}}{\epsilon}+2 \log \left(v^{2}\right)+\text { finite }\right]
$$

We just computed this for unbound orbits see next slide

Divergence cancels in the sum, leaving $\log (v)$ term analogous to Lamb shift in QED with $\log (\alpha)$ term.

## FINITE 3-LOOP AMPLITUDE: POTENTIAL + TAIL

[Bern, Parra-Martinez, Roiban, Ruf, Shen, Solon, MZ, 2112.10750 (PRL)]

$$
\begin{aligned}
& \mathcal{M}_{4}^{\text {cons }}=G^{4} M^{7} \nu^{2}|\boldsymbol{q}| \pi^{2}\left[\mathcal{M}_{4}^{\text {probe }}+\nu\left(4 \mathcal{M}_{4}^{\text {tail }} \log \left(\frac{p_{\infty}}{2}\right)+\mathcal{M}_{4}^{\pi^{2}}+\mathcal{M}_{4}^{\text {rem }}\right)\right]+\text { Iterations } \\
& \mathcal{M}_{4}^{\text {probe }}=-\frac{35\left(1-18 \sigma^{2}+33 \sigma^{4}\right)}{8\left(\sigma^{2}-1\right)}, \mathcal{M}_{4}^{\text {tail }}=r_{1}+r_{2} \log \left(\frac{\sigma+1}{2}\right)+r_{3} \frac{\operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}}, p_{\infty} \equiv \sqrt{\left(u_{1} \cdot u_{2}\right)^{2}-1} \\
& \mathcal{M}_{4}^{\pi^{2}}=r_{4} \pi^{2}+r_{5} K\left(\frac{\sigma-1}{\sigma+1}\right) E\left(\frac{\sigma-1}{\sigma+1}\right)+r_{6} K^{2}\left(\frac{\sigma-1}{\sigma+1}\right)+r_{7} E^{2}\left(\frac{\sigma-1}{\sigma+1}\right), \\
& \mathcal{M}_{4}^{\text {rem }}=r_{8}+r_{9} \log \left(\frac{\sigma+1}{2}\right)+r_{10} \frac{\operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}}+r_{11} \log (\sigma)+r_{12} \log ^{2}\left(\frac{\sigma+1}{2}\right)+r_{13} \frac{\operatorname{arccosh}(\sigma)}{\sqrt{\sigma^{2}-1}} \log \left(\frac{\sigma+1}{2}\right) \\
& \quad+r_{14} \frac{\operatorname{arccosh}^{2}(\sigma)}{\sigma^{2}-1}+r_{15} \operatorname{Li}_{2}\left(\frac{1-\sigma}{2}\right)+r_{16} \operatorname{Li}_{2}\left(\frac{1-\sigma}{1+\sigma}\right)+r_{17} \frac{1}{\sqrt{\sigma^{2}-1}}\left[\operatorname{Li}_{2}\left(-\sqrt{\frac{\sigma-1}{\sigma+1}}\right)-\operatorname{Li}_{2}\left(\sqrt{\frac{\sigma-1}{\sigma+1}}\right)\right] \\
& \quad \text { complete elliptic integrals of the 1st \& 2nd kind }
\end{aligned}
$$

## Rational functions:

$$
r_{1}=\frac{1151-3336 \sigma+3148 \sigma^{2}-912 \sigma^{3}+339 \sigma^{4}-552 \sigma^{5}+210 \sigma^{6}}{12\left(\sigma^{2}-1\right)}, \quad r_{2}=\frac{1}{2}\left(5-76 \sigma+150 \sigma^{2}-60 \sigma^{3}-35 \sigma^{4}\right)
$$

## 4PM SCATTERING ANGLE V.S. NUMERICAL RELATIVITY

(slide by Chia-Hsien Shen)

Original angle in PM perturbation


EOB-improved angle

[Khalil, Buonanno, Steinhoff, Vines, forthcoming] with numerical data from [Damour, Guercilena, Hinder, Hopper, Nagar, Rezzolla]

## NEW FRONTIER: RADIATIVE DYNAMICS

What's the energy loss in black hole scattering, at lowest order in G?
[Herrmann, Parra-Martinez, Ruf, MZ, arXiv:2101.07255 (PRL)]


No exact analytic result until our paper, despite studies dating back to 1970s [Ruffini, Wheeler, '72; Kovac, Throne, '78; Peters, 70]

Consider quantum scattering of wavepackets in the classical limit [Kosower, Maybee, O'Connell, '18]


$$
\sum_{X} \int \mathrm{~d} \Phi_{2+X} \ell_{X}^{\mu} \times \mathcal{M}_{p_{1}}^{p_{2}}
$$

## COLLIDER METHODS MEET GRAVITY

[Herrmann, Parra-Martinez, Ruf, MZ, 2101.07255 (PRL), 2104.03957 (PRD)]


Reverse unitarity [Anastasiou, Melnikov, 'O2; Anastasiou, Dixon, Melnikov, 'O3;
Anastasiou, Duhr, Dulat, Furlan, Herzog, Mistlberger, '15]


Phase space integrals treated like loop integrals.

- Technique instrumental for LHC Higgs cross section at NNLO, N3LO


## EXAMPLE PHASE SPACE INTEGRAL FROM DIFF. EQS.

[Herrmann, Parra-Martinez, Ruf, MZ, 2101.07255 (PRL), 2104.03957 (PRD)]


$$
x=\sigma-\sqrt{\sigma^{2}-1}, \quad \sigma \equiv \frac{p_{1} \cdot p_{2}}{m_{1} m_{2}}, \quad \underset{\uparrow}{\text { ultra-relativistic static }}
$$

## RESULT: ENERGY LOSS IN SCATTERING



$$
\Delta R^{\mu}=\frac{G^{3} m_{1}^{2} m_{2}^{2}}{|b|^{3}} \frac{u_{1}^{\mu}+\hat{u}_{2}^{\mu}}{\sigma+1} \mathcal{E}(\sigma)+\mathcal{O}\left(G^{4}\right) . \quad \text { normalized velocity } 4 \text {-vectors of the incoming BHs }
$$

$$
\begin{aligned}
& \mathcal{E}(\sigma)=f_{1}+f_{2} \log \left(\frac{\sigma+1}{2}\right)+f_{3} \frac{\sigma \operatorname{arcsinh} \sqrt{\frac{\sigma-1}{2}}}{\sqrt{\sigma^{2}-1}} \\
& f_{1}=\frac{210 \sigma^{6}-552 \sigma^{5}+339 \sigma^{4}-912 \sigma^{3}+3148 \sigma^{2}-3336 \sigma+1151}{48\left(\sigma^{2}-1\right)^{3 / 2}} \\
& f_{2}=-\frac{35 \sigma^{4}+60 \sigma^{3}-150 \sigma^{2}+76 \sigma-5}{8 \sqrt{\sigma^{2}-1}}, \quad f_{3}=\frac{\left(2 \sigma^{2}-3\right)\left(35 \sigma^{4}-30 \sigma^{2}+11\right)}{8\left(\sigma^{2}-1\right)^{3 / 2}}
\end{aligned}
$$

## RADIATED MOMENTUM: COMPARISONS

$\Delta E^{\text {hyperbolic }}=\frac{G^{3} m_{1}^{2} m_{2}^{2}}{|b|^{3} \sqrt{1+\frac{2(\sigma-1) m_{1} m_{2}}{\left(m_{1}+m_{2}\right)^{2}}}} \mathcal{E}(\sigma), \quad \sigma \equiv \frac{p_{1} \cdot p_{2}}{m_{1} m_{2}}$

## Ultra-relativistic limit:

$$
\mathcal{E}(\sigma) \sim \frac{35}{8} \pi(1+2 \log (2)) \sigma^{3} \approx 32.7983 \sigma^{3}
$$

Agrees with numerical result of [Bini, Damour, Geralico, '21], $32.7985 \pm 0.0016$. Disagree with [Peters, '70; Kovac, Throrne, '78]

## Small-velocity limit:

$$
\mathcal{E}(\sigma)=\left(\frac{37 v}{15}+\frac{2393 v^{3}}{840}+\frac{61703 v^{5}}{10080}+\frac{12755740946147 v^{15}}{762814660608}+\ldots\right.
$$

Leading term agrees with [Ruffini, Wheeler, '72]
Up to $v^{15}$ : agrees with [Bini, Damour, Geralico, '21],


Figure 4 of [Peters, '70]

## RADIATED MOMENTUM: COMPARISONS

$\Delta E^{\text {hyperbolic }}=\frac{G^{3} m_{1}^{5} m_{2}^{5}\left(\sigma^{2}-1\right)^{3 / 2}}{J^{3}\left(1+\frac{2(\sigma-1) m_{1} m_{2}}{\left(m_{1}+m_{2}\right)^{2}}\right)^{2} M^{3}} \mathcal{E}(\sigma), \quad \sigma \equiv \frac{p_{1} \cdot p_{2}}{m_{1} m_{2}}, \quad M \equiv m_{1}+m_{2}$
By analytic continuation into $\sigma<1$, [Kalin, Porto, '19; Bini, Damour, Geralico, '20]
$\Delta E^{\text {elliptic }}(\sigma, J) \equiv \Delta E^{\text {hyperbolic }}(\sigma, J)-\left.\Delta E^{\text {hyperbolic }}(\sigma,-J)\right|_{\sqrt{\sigma^{2}-1} \rightarrow-\sqrt{1-\sigma^{2}}}$
Energy loss per orbit consistent with $3 P N$ results $\sim \mathcal{O}\left(G^{3} v \cdot G^{n} v^{2 m}\right), n+m \leq 3$
[Blanchet, Schaefer, '89; Peters, Mathews, '63; Peters, '64; Wagoner, Will, '76; Junker,
Schaefer, '92; Gopakumar, Iyer, '97, '01; Arun, Blanchet, Iyer, Qusailah, '08]

Consistent with 4PM "tail" in [Bern, Parra-Martinez, Roiban, Ruf, Shen, Solon, MZ, '21]
$\mathcal{M}_{4}^{\text {pot }}(\boldsymbol{q}) \propto\left[\mathcal{M}_{4}^{p}+\nu\left(\frac{\mathcal{M}_{4}^{t}}{\epsilon}+\mathcal{M}_{4}^{f}\right)\right]+$ Iterations, $\quad \Delta E \propto \mathcal{M}_{4}^{t}$
Proportinality predicted by [Bini, Damour, '17; Bini, Damour, Geralico, '20; Blanchet, Foffa, Larroutorou, Sturani, '19]

## DISCUSSIONS \& OUTLOOK

- Obtained new results for post-Minkowskian binary dynamics, in some cases beyond best classical calculations.
- Start to compete with post-Newtonian theory, and offers new analytic insights.
- Relies on modern methods for scattering amplitudes (double copy, generalized unitarity), EFT (inspired by NRQED/QCD), advanced integration methods (IBP, DE, reverse unitarity)..
- Exciting new frontier of radiative dynamics. Need vast improvements to become mature.
- Rich physics to be explored - spin, tidal effects, radiation reaction, tail effects, angular momentum loss... Preparing for coming decades of GW physics!

