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Axion dark matter mass




axion DM experiments need to scan its mass ... they could use a hint

-From f, ~ 102 GeV to f, ~ 10° GeV 11 orders of magnitude in axion mass to scan...
10'7 channels in mass.....
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any theory bias?

- String theory?
- weakly coupled heterotic string fa~1.1Xx 1019GeV ma ~ 5.2 x 107V Witten 1985 Q
-... plenty of other posibilities See e.g. Svr'cek 2006 Q
falGeV]
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- Grand Unified Theories

seee.q. Emst 2018

SO(10) x U(1)pq predictions

Model 1, Npw =3

Model 21, NDW =3

Model 22, NDW =1
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- Supersymmetry

- No strong theory bias, mostly pheno

- Simple complete-models PP+Cosmo (SMASH-like)  Ballesteros 2017

- Motivations are pheno




any bias from phenomenology?

- Measurement available

- Axion DM abundance QA (TTLA)hQ S .12 T A 2 42 tbc the, to be confirmed units

- Measurements possible in the future

-Observed galactic/extragalactic MW lines from axion DM decay ?

-Black hole spin depletion?

-Microlensing/femtolensing/other type of events from axion miniclusters?

-birefringence/dichroism?



Axion DM mass: ICs and Cosmology

- Stochastic Graham 2018

- Kinetic mis/Parametric resonance Co 2020
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post-inflationary scenario N=1

misalignment
Domain walls break the

F Axitons
Py et W) Free-stream (RD)
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Inflation?

Miniclusters form

hierarchical growth

Galaxy forms with MC halo

radiation domination (assumed)

matter d. . 2~ 0(1



Postinflation scenario, the problem

- Axion strings form by Kibble mechanism - SIMULATION REQUIRES DYNAMICAL RANGE  ~ fa/H ~ 107 (available ~ 10°)

- Energy logarithmically distributed around, tension 1 ~ 73 log (%)

Mg ~ log(fa/H) ~ 70
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How to tackle the energy problem (get the right axion number)

Two approaches:

Direct simulation : 1) Simulate and 2) count the axions, extrapolate

Moore, Redondo, Buschmann
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In-Direct simulation : 1) Simulate to model axion emission from strings, 2) extrapolate the spectrum, 3) count the axions
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Inflation?

radiation domination (assumed)

PQ-phase transition

post-inflationary scenario, simulations

Scaling

- Maximum simulation Boxes of 10”4, limited
simulation range
- Three types of simulations:

- PO-phase transition

- Scaling (indirect)

- QCD Phase transition (direct)

Misalignment

Axitons



Direct simulations

Two approaches:

Moore, Redondo, Buschmann

Usual U(1) global string 1 extra degree of freedom (radial mode, saxion)

unphysical DW destruction

Moore

2+3 extra degrees of freedom (two higgs, 1 vector field)

fA/v parametrically suppressed by gauge charges
large effective tension
no unphysical DW destruction




Direct simulations

Relatively good agreement of direct simulations
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maleV] (means... extra energy doesn't convert efficienty into DM axions)
"UV energy stays in the UV”



Indirect simulations: the axion spectrum

- Goal: understand how energy is transfered from strings to axions

14
- String network density, scaling solution (O(1) string length/Hubble vulume) o, = t% (N lg—3> ~ O (EH*f4K)  Kibble,Vilenkin
It

f ~ 1 Yamaguchi '99, Hiramatsu '11

9L

Implies an energy lossrate 'y, ., 4 = -3

: L,
- Axion ENERGY produced atthatrate.. p4 +4Hpa =1'g 4 # pA ~ §<\A|2> ~ O(ExH? f3)

- BUT Axion NUMBER is the adiabatic invariant!
depends on the mean energy

t R \° [ dk dpa
- Axion number depends on the spectrum 7.4 (t) ~ /O dt ( R(t)> / ST # ® ®

few high-E axions  many low-E
axions




String network evolution

- Studied in many papers at low tension (k<9)

- 0(1) with small logarithmic increase  Gorghetto, Viladoro, Hardy
- Extrapolates to 0(1 5) Gorghetto, Viladoro, Hardy20, Buschman 21

- Small controversy, 1p vel model Hindmarsh 21
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log fA/H (distance between strings/string core)

The fraction of the total string length ¢ /o that is contained
in loops smaller than | for different time shots.
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Spectrum of string radiated axions

0 p,
otok
- Power-law between IR (limited by causality) and UV (fA) cut-offs

1 /K

- Several attempts in the literature, differ mostly in :
ICs, statistics, and analysis details Hiramatsu, VGH, Redondo, Buschman

- Time-derivative of the spectrum 7 ~

Gorghetto, Viladoro, Hardlt
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the impact of g

- Model spectrum like a power law | / k4 Flz,y] = { : BV g m<<y

r<zroVz>Yy,
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the value of q

- 0(100) simulations
- find q<1 but increasing
- theoretical expectations

- Compatible with similar simulations (in particular mine...)
(Redondo, Saikawa, Vaquero to appear)

- ++AMR to increase dynamical range!! o0

- ICs with a PQ phase transition (parameters?) 1 95

- 1 huge simulation =

- Very conservative analysis 1.00

-find q~1 NOT INCREASING - S

- some theoretical reasoning
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Extrapolation
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Non-linearities at large axion production

- Scaling analysis give a value of nA around the QCD phase transition,
- QCD potential is non-linear, DWs destroy string network ... how does this affect?

- Leading effects at large nA studied by VGH21, strong SORT reduction
- Very important for VGH21 assumption (q>>1), less so for Buschmann 21 (q~1)
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Direct simulations

Very good agreement of direct simulations

take g=1

—e—

+—>
take q>>1+NIL
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Conclusions

- New generation of numerical simulations are getting closer to tackle the axion DM mass

- Main problem is dynamical range

- Direct attempt: more or less convergent results (need to reduce errors) [have xi~O(1), g<1], k~8-70! UV stays in the UV
- Indirect attempt:

- VGH atractor solution suggests g>>1 ...although the growing trend could stagnate at g=1 (then why not xi too?)

- Buschmann 21 finds g=1 with 1 simulation and different ICs, no NL evolution under OCD

- Need to increase dynamical range, statistics and use similar ICs to be sure of extrapolation.

- Note: Direct attempt is only justified if g<~1,xi~O(1) by the indirect attempt



