Observational Searches for Ultra-Light FIPs with Cosmological Surveys

Benjamin Wallisch

Stockholm University & UT Austin

FIPs 2022, CERN, October 2022

Cosmology is Broadly Sensitive to FIPs

• Long time scales and high densities compensate for weak interactions.

• Cosmic microwave background and large-scale structure surveys are and will be providing interesting bounds, both leading and complementary.

• Sensitive to both hot (thermal) and cold (non-thermal) populations.

Cosmology is Broadly Sensitive to FIPs

• Long time scales and high densities compensate for weak interactions.

• Cosmic microwave background and large-scale structure surveys are and will be providing interesting bounds, both leading and complementary.

• Sensitive to both hot (thermal) and cold (non-thermal) populations.

Efficient Production in the Universe

Light particles can be efficiently produced in the extreme environments studied in astrophysics and cosmology.

Long time scales Δt and high densities n can compensate small cross sections σ :

Above $10^4 \,\mathrm{GeV}$, (early universe) cosmology beats astrophysics.

Probe particle physics and the history of the universe.

Cosmology is Broadly Sensitive to FIPs

• Long time scales and high densities compensate for weak interactions.

• Cosmic microwave background and large-scale structure surveys are and will be providing interesting bounds, both leading and complementary.

• Sensitive to both hot (thermal) and cold (non-thermal) populations.

CMB Maps and Power Spectra

Planck Collaboration (2018)

Some Large-Scale Structure Observables

Lyman-α forest

Galaxy clusters

NASA, ESA and M. Brodwin

Infer the matter statistics.

Some Targets and Their Driving Observables

Mass (eV)

Cosmology is Broadly Sensitive to FIPs

• Long time scales and high densities compensate for weak interactions.

• Cosmic microwave background and large-scale structure surveys are and will be providing interesting bounds, both leading and complementary.

• Sensitive to both hot (thermal) and cold (non-thermal) populations.

Effective Number of Neutrinos

- Neutrinos: 41% of the radiation density in the universe
 - \rightarrow Leave gravitational imprint,
 - \rightarrow Can detect their energy density.

$$\rho_r = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{\text{eff}}\right] \rho_\gamma$$

• Observable: "effective number of neutrinos" $N_{\rm eff}^{\rm SM}=3.044$.

Planck (2018)

e.g. Akita &Yamaguchi (2020), Froustey et al. (2020), Bennett et al. (2021)

Cooke et al. (2015)

Future Constraints from CMB and Large-Scale Structure

 \rightarrow Go beyond neutrinos and probe other light relics!

Future Constraints from CMB and Large-Scale Structure

 \rightarrow Go beyond neutrinos and probe other light relics!

Light^{*} Thermal Relics

Relic density $\rho_X(\Lambda)$ measured in terms of $N_{\text{eff}} = N_{\text{eff}}^{\text{SM}} + \Delta N_{\text{eff}}$:

$$\begin{split} \Delta N_{\rm eff}(T_F) &= \frac{\rho_X}{\rho_{\nu_i}} = 0.027 \, g_{*,X} \left(\frac{g_{*,\rm SM}}{g_{*}(T_F)} \right)^{4/3} \gamma^{-4/3} \\ & \uparrow & \uparrow \\ \text{effective number of relativistic} & \text{entropy production} \\ & \text{degrees of freedom} \end{split}$$

$$g_{*,X} = 1, \frac{4}{7}, 2, \dots$$
 for spin-0, $\frac{1}{2}, 1, \dots$ $g_{*,SM} = 106.75$

^{*} Light usually refers to massless to roughly sub-eV.

Light^{*} Thermal Relics

Relic density $\rho_X(\Lambda)$ measured in terms of $N_{\text{eff}} = N_{\text{eff}}^{\text{SM}} + \Delta N_{\text{eff}}$:

degrees of freedom

$$g_{*,X} = 1, \frac{4}{7}, 2, \dots$$
 for spin-0, $\frac{1}{2}, 1, \dots$ $g_{*,SM} = 106.75$

Assume:

- Negligible entropy production ($\gamma \approx 1$).
- Minimal extension of the Standard Model $(g_*(T \gg m_t) \approx g_{*,SM})$.

 $\longrightarrow \Delta N_{\text{eff}} \ge 0.027 g_{*,X}$

* Light usually refers to massless to roughly sub-eV.

For a detailed discussion on these assumptions and more, see e.g. BW (2018)

Light Thermal Relics

Light Thermal Relics

Example: Axion-Like Couplings to Standard Model Fermions

General Lagrangian:

$$\mathcal{L} = -\frac{\partial_{\mu}\phi}{\Lambda_{\psi}} \bar{\psi}_{i} \gamma^{\mu} \left(g_{V}^{ij} + g_{A}^{ij} \gamma^{5} \right) \psi_{j}$$

$$\rightarrow \frac{\phi}{\Lambda_{\psi}} \left(iH \bar{\psi}_{L,i} \left[\left(\lambda_{i} - \lambda_{j} \right) g_{V}^{ij} + \left(\lambda_{i} + \lambda_{j} \right) g_{A}^{ij} \right] \psi_{R,j} + \text{h.c.} \right) + \mathcal{O}(\phi^{2})$$

After the electroweak phase transition:

$$\mathcal{L} = i \frac{\phi}{\Lambda_{\psi}} \bar{\psi}_i \left[(m_i - m_j) g_V^{ij} + (m_i + m_j) g_A^{ij} \gamma^5 \right] \psi_j$$

Restrict to diagonal couplings:

$$\mathcal{L} = \mathrm{i}\frac{2m_i}{\Lambda_i}\phi\bar{\psi}_i\gamma^5\psi_i = \mathrm{i}\tilde{\epsilon}_i\phi\bar{\psi}_i\gamma^5\psi_i\,,\qquad \Lambda_i \equiv \Lambda_\psi/g_A^{ii}\,,\quad \tilde{\epsilon}_i \equiv \frac{2m_i}{\Lambda_i}$$

Rethermalization

For couplings to SM fermions after the electroweak phase transition:

Rethermalization

For couplings to SM fermions after the electroweak phase transition:

Remember: rethermalization at $H(T) \sim \Gamma(T)$

Avoid Rethermalization Abundance

Boltzmann-suppress the rethermalization abundance by requiring the would-be rethermalization temperature to be below the mass of the coupled SM fermion:

Avoid Rethermalization Abundance

Boltzmann-suppress the rethermalization abundance by requiring the would-be rethermalization temperature to be below the mass of the coupled SM fermion:

Predictions for $\Delta N_{\rm eff}$

Solving the Boltzmann equation, we predict:

* Calculations for charm and bottom couplings are impacted by the QCD phase transition. Here: conservative estimate.

Green, Guo & BW (2021); cf. also D'Eramo et al.

Comparison to Astrophysical and Terrestrial Constraints

Current and upcoming CMB surveys can put complimentary and competitive constraints on axion-fermion couplings by avoiding freeze-in:

Cosmology is Broadly Sensitive to FIPs

• Long time scales and high densities compensate for weak interactions.

• Cosmic microwave background and large-scale structure surveys are and will be providing interesting bounds, both leading and complementary.

• Sensitive to both hot (thermal) and cold (non-thermal) populations.

Example: Non-Thermal Ultra-Light Axions

- Non-thermally produced axions can contribute to dark matter and dark energy:
 - standard dark energy for $m_{\phi} \lesssim 10^{-33} \, {\rm eV}$,
 - early dark energy for $m_{\phi} \lesssim 10^{-27} \, {\rm eV}$,
 - dark matter for $m_{\phi} \gtrsim 10^{-27} \, \mathrm{eV}$.
- Gravitational ultra-light axion window: $10^{-33} \text{ eV} \lesssim m_{\phi} \lesssim 10^{-10} \text{ eV}$.
- Various observable implications, including suppression of density fluctuations below the (comoving) Jeans scale $\lambda_J = 0.1 \,\mathrm{Mpc} \,(m_{\phi}/10^{-22} \,\mathrm{eV})^{-1/2} \,(1+z)^{1/4}$.
- Isocurvature modes are also excited if U(1) symmetry breaking before the end of inflation.
- Coupling to photons leads to birefringence and resonant conversion.

Example: Non-Thermal Ultra-Light Axions

Dvorkin et al. (2022) [Hložek et al. (2015), Poulin et al. (2018), Rogers & Peiris (2021), Farren et. al. (2021), Laguë et al. (2022), Dentler et al. (2022), ...]

Cosmology is Broadly Sensitive to FIPs

- Long time scales and high densities compensate for weak interactions.
- Cosmic microwave background and large-scale structure surveys are and will be providing interesting bounds, both leading and complementary.
- Sensitive to both hot (thermal) and cold (non-thermal) populations.

Backup Slides

Avoid Freeze-Out Abundance

Suppress the freeze-out abundance from a dimension-5 coupling to massless SM particles by requiring the would-be freeze-out temperature to be above the reheating temperature*:

* Alternatively, weaker constraints can be derived by excluding a given freeze-out temperature.

Example: Constraints on the Axion Coupling to Photons

Exclusion of $\Delta N_{\text{eff}} = 0.027$ implies strong constraints on couplings to the Standard Model:

Similar constraints apply to couplings to gluons, charged fermions and neutrinos.

Baumann, Green & BW (2016)

Example: Constraints on the Axion Coupling to Gluons

Exclusion of $\Delta N_{\text{eff}} = 0.027$ implies strong constraints on couplings to the Standard Model:

Similar constraints apply to couplings to photons, charged fermions and neutrinos.

Baumann, Green & BW (2016)

Constraints on Axion Couplings to Matter Fields

Similar constraints apply to couplings of Goldstone bosons to charged fermions and neutrinos:

	Current Constraints		Future CMB Constraints		
Coupling	Bound [GeV]	Origin	Freeze-Out [GeV]	Freeze-In [GeV]	$\Delta ilde{N}_{ m eff}$
Λ_{ee}	1.2×10^{10}	White dwarfs	$6.0 imes 10^7$	$2.7 imes10^6$	
$\Lambda_{\mu\mu}$	2.0×10^6	Stellar cooling	$1.2 imes 10^{10}$		
$\Lambda_{ au au}$	2.5×10^4	Stellar cooling	$2.1 imes 10^{11}$		
Λ_{bb}	$6.1 imes 10^5$	Stellar cooling	$9.5 imes 10^{11}$		
Λ_{tt}	1.2×10^9	Stellar cooling	3.5×10^{13}		
$\Lambda^V_{\mu e}$	$5.5 imes 10^9$	$\mu^+ \to e^+ \phi$	$6.2 imes 10^9$		
$\Lambda_{\mu e}$	$3.1 imes 10^9$	$\mu^+ \to e^+ \phi \gamma$	$6.2 imes10^9$		
$\Lambda_{ au e}$	$4.4 imes 10^6$	$\tau^- \to e^- \phi$	$1.0 imes 10^{11}$		
$\Lambda_{ au\mu}$	$3.2 imes 10^6$	$\tau^- \to \mu^- \phi$	$1.0 imes10^{11}$		
ΛA	6.0×10^5	$D^0 \ \overline{D}^0$	1.2×1011		

Predictions for $\Delta N_{\rm eff}$

Predictions for the charm and bottom couplings are affected by the QCD phase transition:

