Direct Searches for Ultra-Light FIPs with Gravitational-Wave Detectors

Hartmut Grote FIPs CERN workshop 18/10/2022

So what is the dark matter?

- WIMPS (miracle)
- Axions (and ALPs)
- Ultra-light bosons (VULFs)
- Sterile Neutrinos
- •
- Black Holes, ...

Search where

you can

'officially' recommended Strategy!

'no stone left unturned' Bertone, Tait 'A new era in the quest for dark matter' Nature 562, 51-56 (2018)

Michelson Interferometer

Michelson-Morley experiment: Accuracy: 10^-8 m (10^-9 relative) 10m arm-length

Michelson, with additions...

Michelson-Morley experiment: Accuracy: 10^-8 m (10^-9 relative) 10m arm-length

Advanced Interferometer: 3-4 km arm-length Accuracy: 10^-19 m (3 x 10^-23 relative), 100Hz BW

Michelson, with additions...

Michelson-Morley experiment: Accuracy: 10^-8 m (10^-9 relative) 10m arm-length

Advanced Interferometer: 3-4 km arm-length Accuracy: 10^-19 m (3 x 10^-23 relative), 100Hz BW

Indirect vs. Direct FIPs searches With Gravitational-Wave Detectors

Indirect

- Ultra-Light Boson Cloud around spinning black holes search via continuous GW detection
 - D'Antonio et al. 2018, PRD 98, 103017
 - Palomba et al. 2019, PRL 123, 171101
 - Sun et al. 2019 PRD 101, 063020
- Impact of ultra-light boson clouds on binary black hole mergers
 - Baumann et al. 2019, PRD 99, 044001
 - Yang et al. 2018, Res. Astron. Astrophys. 18, 065
 - Choudhary et al. 2021, PRD 103, 044032
- Stochastic GW background from ultra-light bosons
 - Tsukada et al. 2019, PRD 99, 103015
- ...others / ongoing

Indirect vs. Direct FIPs searches With Gravitational-Wave Detectors

Indirect

- Ultra-Light Boson Cloud around spinning black holes search via continuous GW detection
 - D'Antonio et al. 2018, PRD 98, 103017
 - Palomba et al. 2019, PRL 123, 171101
 - Sun et al. 2019 PRD 101, 063020
- Impact of ultra-light boson clouds on binary black hole mergers
 - Baumann et al. 2019, PRD 99, 044001
 - Yang et al. 2018, Res. Astron. Astrophys. 18, 065
 - Choudhary et al. 2021, PRD 103, 044032
- Stochastic GW background from ultra-light bosons
 - Tsukada et al. 2019, PRD 99, 103015
- ...others / ongoing

Direct

- Scalar field search (with GEO and Holometer)
 - Grote & Stadnik 2019, PRR 1, 033187
 - Vermeulen et al. 2021, Nature 600, 424
 - Aiello et al. 2022, PRL 128, 121101
- Dark Photon search (with LIGO)
 - Pierce et al. 2018, PRL 121, 061102
 - Guo et al. 2019, Nature comm. Phys 2, 155
 - Abbott et al. 2022, PRD 105, 063030
- ...others / ongoing

Direct Dark Matter Detection with GW Detectors

- Scalar Field
- Dark Photon
- (Axions ?)

Sub-eV scalar field Dark Matter (includes WISP/VULF, Dilaton, Modulus, Relaxion, ...)

• Produced in early Universe by e.g. 'misalignment mechanism', manifests as oscillating field with local density $\rho_{\rm local}$

$$\phi(t, \vec{r}) = \left[\frac{\hbar\sqrt{2\,\rho_{\text{local}}}}{m_{\phi}\,c}\right] \,\cos\left(\omega_{\phi}\,t - \vec{k}_{\phi}\cdot\vec{r}\right)$$

• Trapped and virialised in gravitational potential wells of e.g. galaxies

Scalar DM changes size and refractive index of solids

- Couples to SM photon and electron fields with coupling strength Λ_x

$$\mathcal{L}_{\rm int} \supset \frac{\phi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} - \frac{\phi}{\Lambda_e} m_e \bar{\psi}_e \psi_e$$

• Scalar DM changes electron mass $m_{\rm e}$ and fine structure constant α

$$\frac{\delta\alpha}{\alpha} = \frac{\phi}{\Lambda_{\gamma}} \qquad \qquad \frac{\delta m_e}{m_e} = \frac{\phi}{\Lambda_e}$$

Scalar DM changes size and refractive index of solids

- Couples to SM photon and electron fields with coupling strength $\Lambda_{\rm x}$

$$\mathcal{L}_{\rm int} \supset \frac{\phi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} - \frac{\phi}{\Lambda_e} m_e \bar{\psi}_e \psi_e$$

• Scalar DM changes electron mass m_{e} and fine structure constant

$$\frac{\delta\alpha}{\alpha} = \frac{\phi}{\Lambda_{\gamma}} \qquad \qquad \frac{\delta m_e}{m_e} = \frac{\phi}{\Lambda_e}$$

Causes oscillatory changes of size *l* and refractive index *n* of solids

Grote & Stadnik, PRR (2019)

Grote & Stadnik, PRR (2019)

Grote & Stadnik, PRR (2019)

- LIGO/Virgo/KAGRA have high arm strain sensitivity, relatively lower phase sensitivity
- □ GEO600 most sensitive interferometer for this signal

Expected signal from scalar DM in an interferometer

Dark matter signal is pseudo-coherent

Quasi-monochromatic signals [] Problems with spectral analysis

- Signal becomes incoherent with itself for $T_{DFT} > \tau_{coh}$
- Large spectral measurement uncertainty for $T_{DFT} < \tau_{coh}$
- Optimal FFT binning technique for 1e-6 linewidth

Upper limits on scalar field dark matter with GEO600

Upper limits on scalar field dark matter with GEO600

Nature 600, 424-428 (2021)

Upper limits on scalar field dark matter with GEO600

DM search w/ co-located interferometers

Constraints on Scalar field DM from co-located Michelson Interferometers

Constraints on Scalar field DM from co-located Michelson Interferometers

Dark Photons

- Are gauge boson of a U(1) extension of the standard model
- Have a vector potential (like ordinary photons) of an equivalent 'electric' field caused by the 'dark charge'
- Cause sinosoidal force on matter carrying dark charge (baryon or neutron number)

Dark Photons

- Are gauge boson of a U(1) extension of the standard model
- Have a vector potential (like ordinary photons) of an equivalent 'electric' field caused by the 'dark charge'
- Cause sinosoidal force on matter carrying dark charge (baryon or neutron number)

Dark Photon coupling to Interferometers

Acceleration common to all mirrors, Except for small phase shifts from Finite de Broglie wavelength (~3e9m at 100Hz)

 \rightarrow singal strength depends on arm-length

Signal depends on direction of wave Which can be averaged over

Dark Photon search with LIGO and Virgo

- First search on LIGO O1 data (2019)
- Added effect from light travel time, and increased sensitivity in O3, and using LIGO and Virgo data (2022):

Abbott et al. 2022, PRD 105, 063030

Dark Photon coupling to Interferometers

- Can get larger signal using different Materials.
- \rightarrow KAGRA detector: arm test masses Made of sapphire

Other ideas with interferometry: Axion-Like-Particles

- Proposal for (galactic halo) ALP's detection in GW detectors
- GW detectors not optimized for polarization effects
- \rightarrow evolved to table-top proposals, now pursued in Tokyo and Birmingham

Phys. Rev. D **98**, 035021 (2018), Phys. Rev. Lett. **121**, 161301 (2018), Phys. Rev. D **100**, 023548 (2019), Phys. Rev. D **101**, 095034 (2020)

Other ideas with interferometry: Axion-Like-Particles

- Proposal for (galactic halo) ALP's detection in GW detectors
- GW detectors not optimized for polarization effects
- \rightarrow evolved to table-top proposals, now pursued in Tokyo and Birmingham

Phys. Rev. D **98**, 035021 (2018), Phys. Rev. Lett. **121**, 161301 (2018), Phys. Rev. D **100**, 023548 (2019), Phys. Rev. D **101**, 095034 (2020)

Future Work and Detectors

- O4 LIGO-Virgo-KAGRA collaboration paper (dark photons and scalar fields)
- KAGRA work on effects from different materials
- Future GW detectors / interferometers
 - LIGO-Virgo-KAGRA upgrades
 - Einstein Telescope / Cosmic Explorer
 - LISA and other space interferometers
 - Table-tops

Projected sensitivity for dark photon DM

Morisaki et al. PRD 103, 051702 (2021)

Summary

- Direct search for scalar field and dark photon DM with GW detectors (LIGO, Virgo, GEO) + Holometer
- Nothing found, but new upper limits set that beat existing experimental limits by up to several orders of magnitude
- Laser interferometers are a very sensitive tool. Sensitivity and size will increase in the future and other coupling mechanisms may be explored

S.M. Vermeulen

Dark Matter and gravitational waves

Mind map from: Bertone et al., SciPost Physics Core 3, 007 (2020) (arXiv:1907.10610)

Dark Matter and gravitational waves

- Dark photons
- Domain walls
- Clumpy DM

. . .