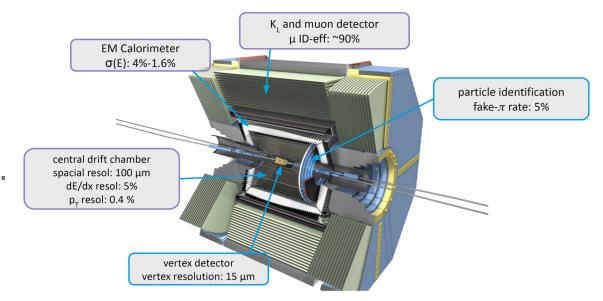


Status and prospects for light DM and mediator searches at Belle II

Christopher Hearty U. British Columbia / IPP October 19, 2022

FIPs 2022 Workshop

On behalf of the Belle II collaboration

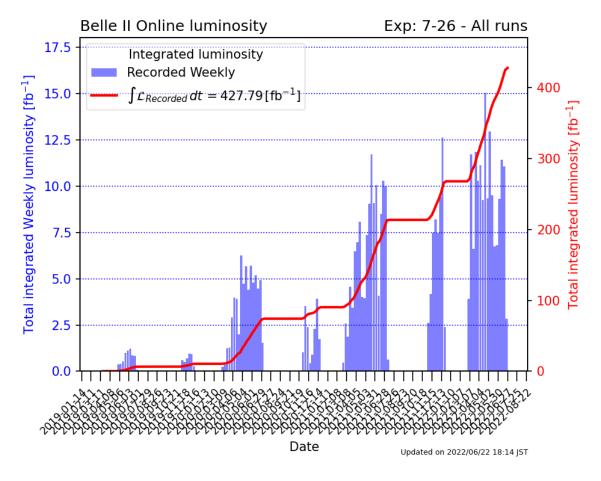

Outline

- Belle II and SuperKEKB
- Z' and leptophilic dark scalars
- Dark photons

Belle II and SuperKEKB

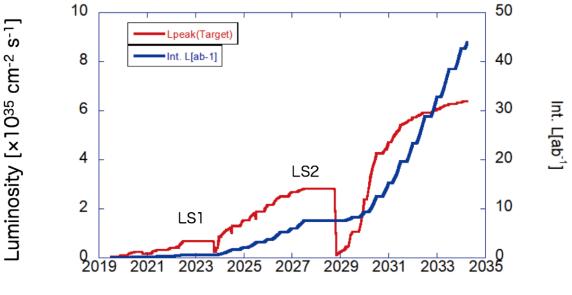
Belle II at the SuperKEKB e+e- collider in Tsukuba, Japan

 Almost total upgrade of Belle for better performance and higher rate capabilities.



- Key for dark sector:
 - clean e+e- environment;

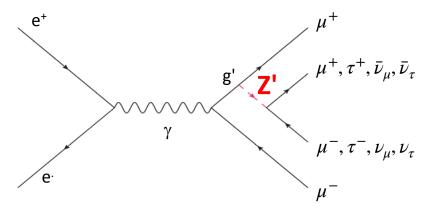
- loose triggers (single γ , single track); currently, some are very loose. Displaced vertex under development.


- (in the long run) high luminosity.

- Belle II has collected 428 fb⁻¹ since March 2019.
- In long shutdown 1 to install two-layer pixel detector, July 2022 – September 2023.

SuperKEKB

- World's highest instantaneous luminosity collider, 4.7×10^{34} cm⁻²s⁻¹. Target is 6×10^{35} cm⁻²s⁻¹:
 - increase current while reducing injection backgrounds;
 - reduce catastrophic beam loss events;
 - control emittance blowup and beam instability;
 - hardware upgrades in LS2 \rightarrow international task force.



C. Hearty | Dark sector at Belle II | FIPs 2022

Z' and leptophilic dark scalars

The $L_{\mu} - L_{\tau}$ gauge boson Z'

- Couples only to 2nd and 3rd generations. Evades strong limits from electron production and decay.
- Could explain muon (g-2)_{μ}, and B decay anomalies R_{D^*} , R_K , R_{K^*} .

 $\tau^+ \tau^- Z'$ is also possible, but less sensitive

• Existing limits from BaBar, CMS, and Belle on $Z' \rightarrow \mu^+ \mu^-$ strongly constrain parameter space relevant for $(g-2)_{\mu}$. Phys. Rev. D 94 (2016) 011102 Phys. Lett. B 792 (2019) 345 Phys. Rev. D 106 (2022), 012003

Earlier Belle II result

 $L_{\mu}-L_{\tau}$ (obs.) 90% CL UL

5

 $M_{z'}$ [GeV/c²]

 $\mu_{\mu}-L_{\tau}$, BF(Z' \rightarrow inv)=1 (obs.) 90% CL UL

6

7

8

(g-2) $\pm 2\sigma$

Belle II 2018

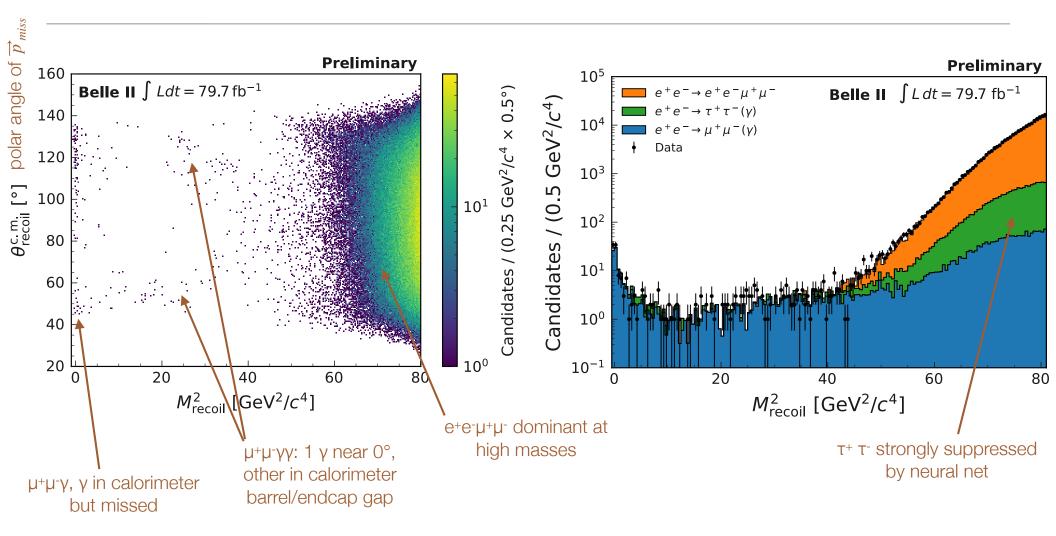
 $Ldt = 276 \text{ pb}^{-1}$

2

3

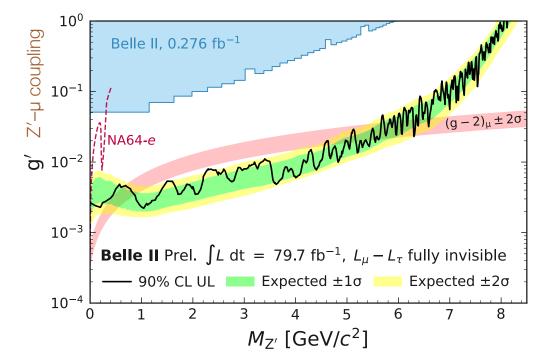
Only published result on 10^{-1} $Z' \rightarrow \nu \bar{\nu}$ is early Belle II result 10^{-1} - most relevant for $m_{Z'} < 2m_{\mu}$. 10^{-3}

•


Belle II, Phys. Rev. Lett. 124 (2020) 141801 10⁻⁴ L

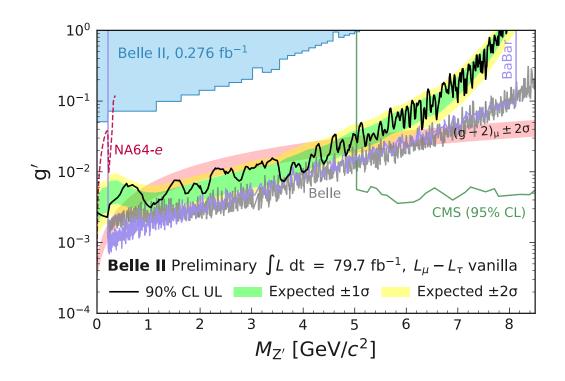
• Also possible that the Z' is the mediator between standard model and dark matter χ , in which case $\mathscr{B}(Z' \to \chi \chi)$ would be dominant even above $2m_{\mu}$.

Search for an invisible Z' in the final state with two muons and missing energy at Belle II


- Signature: pair of muons with missing mass = $m_{Z'}$.
- Backgrounds:
 - $\tau^+\tau^-$, with both $\tau \to \mu\nu\bar{\nu}$;
 - $\mu^+\mu^-\gamma$; - $\mu^+\mu^-\gamma\gamma$; out of acceptance or missed - $\mu^+\mu^-e^+e^-$;
- Key: Z' is final state radiation. Train neural net to identify characteristic kinematics.

$Z' \rightarrow$ invisible selected events

$Z' \rightarrow \text{invisible results}, \mathscr{B}(Z' \rightarrow \text{invisible}) = 1$

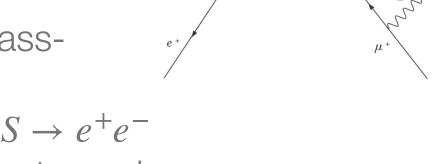

• Fit 2D distribution θ_{recoil}^{cm} vs M_{recoil}^2 ; no excess observed.

• For $\mathscr{B}(Z' \rightarrow \text{invisible}) = 1$, $(g-2)_{\mu}$ parameter space excluded for $0.8 < M_{Z'} < 5.0 \text{ GeV/c}^2$. First such limits.

Z' results, Z' \rightarrow standard model only

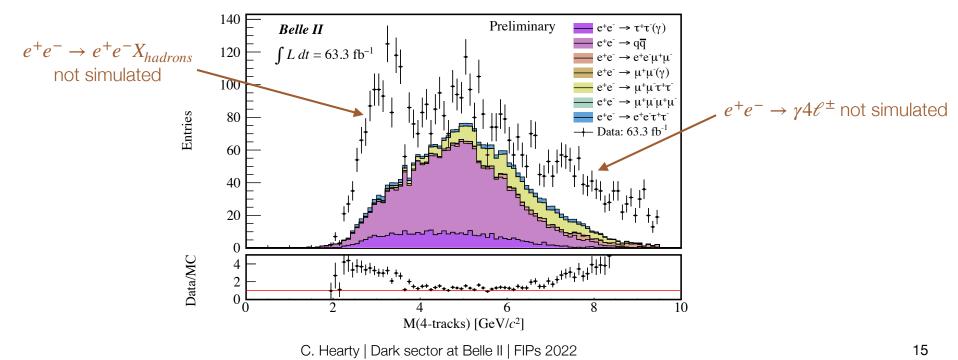
 If Z' decays only to standard model particles, limits improved below 2m_μ, but region could still explain (g-2)_μ.
 we have ideas for improvements.

First search for a $\tau^+\tau^-$ resonance in $e^+e^- \rightarrow \mu^+\mu^-\tau^+\tau^$ events with the Belle II experiment


- $Z' \rightarrow \tau^+ \tau^-$ (strong existing $\mu^+ \mu^-$ constraints);
- Leptophilic scalar S with massdependent coupling;
 BaBar has searched for S → e⁺e⁻ or μ⁺μ⁻ in association with a tau pair.

Phys. Rev. Lett. 125 (2020) 181801

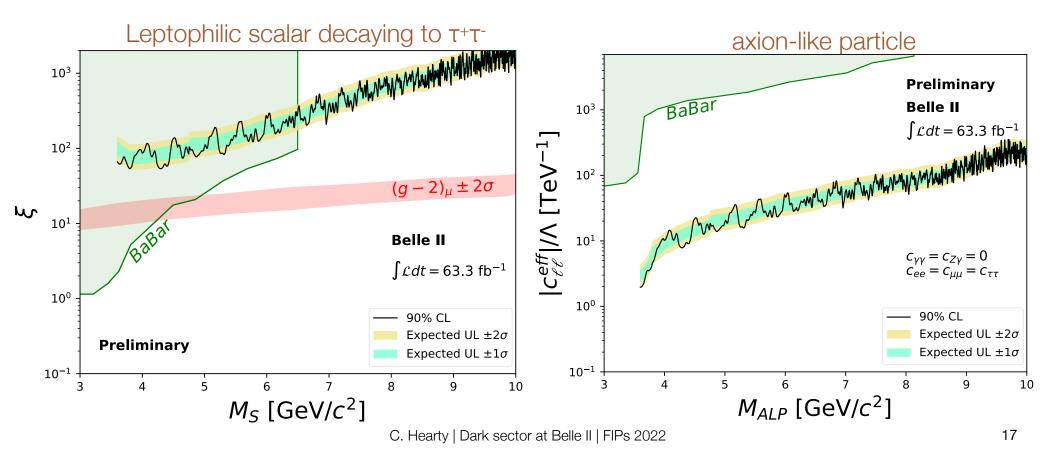
- Axion-like particle coupling to leptons. Assumed to not couple to γ .
- Signature: 4 tracks, including $\geq 2 \text{ mu }_{e^-}$


 μ^{-}

s with the Belle II experiment

Selected events

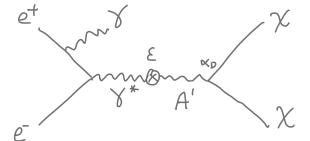
- Require M(4 tracks) < 9.5 GeV/c² to suppress $e^+e^- \rightarrow 4\ell^{\pm}$
- Train neural net on distinctive kinematic features:
 - final state radiation
 - consistent with tau pair recoiling against muon pair.



Look for a peak in the recoil mass spectrum, on a locally-flat background.
 resolution: 30 MeV @ threshold → 10 MeV @ 6 GeV
 → 1 MeV @ 10 GeV.

 $e^+e^- \rightarrow e^+e^-X_{hadrons}$ not simulated Preliminary 300 Belle II $e^+e^- \rightarrow \tau^+\tau^-(\gamma)$ $\int L dt = 63.3 \text{ fb}^{-1}$ **Entries** per 150 MeV $\rightarrow q\bar{q}$ 250 $\rightarrow e^+e^-\mu^+\mu^ \rightarrow \mu^+\mu^-(\gamma)$ 200 $e^+e^- \rightarrow \mu^+\mu^-\tau^+\tau^$ $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^$ $e^+e^- \rightarrow \gamma 4\ell^{\pm}$ not simulated $e^+e^- \rightarrow e^+e^-\tau^+\tau^-$ 150 Data: 63.3 fb⁻¹ 10050 8 10 6 $M_{recoil}(\mu\mu) [GeV/c^2]$

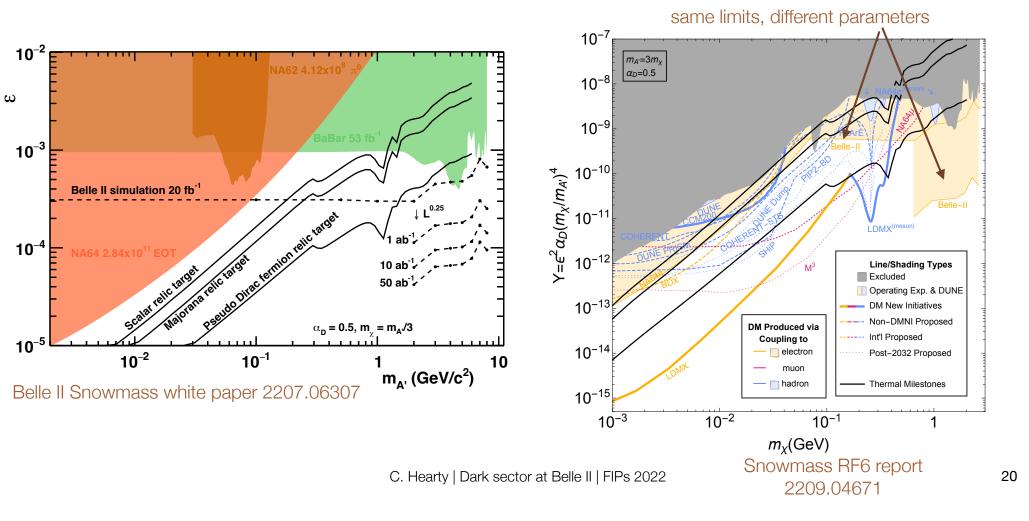
Tau pair resonance results


- First leptophilic scalar limits above 6.5 GeV/c².
- World leading limits on axion-like particle decays to leptons.

Dark photons

Dark photons and Belle II

Simplest case: on-shell production
 of a dark photon A' via initial-state
 radiation. Will decay to dark matter
 if kinematically allowed. "Single photon" analysis.


- Plan is to publish on current data set. Challenge is to quantify backgrounds:
 - $e^{+}e^{-} \rightarrow \gamma \gamma$ $e^{+}e^{-} \rightarrow \gamma \gamma \gamma$ $e^{+}e^{-} \rightarrow \gamma e^{+}e^{-}$

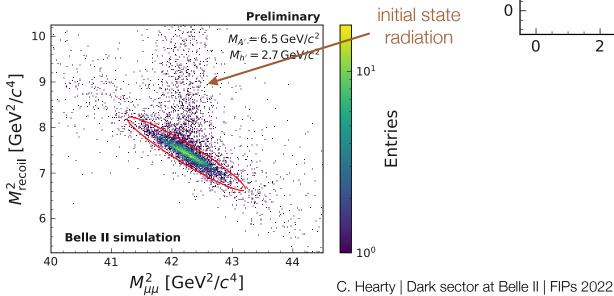
all but one γ out of acceptance or missed

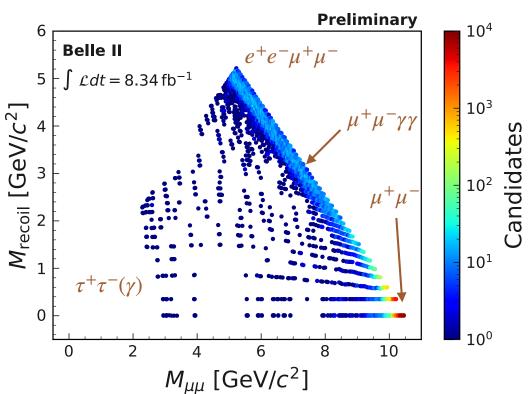
- cosmic rays
- single beam (non-luminosity)

Belle II sensitivity, invisible dark photon decays

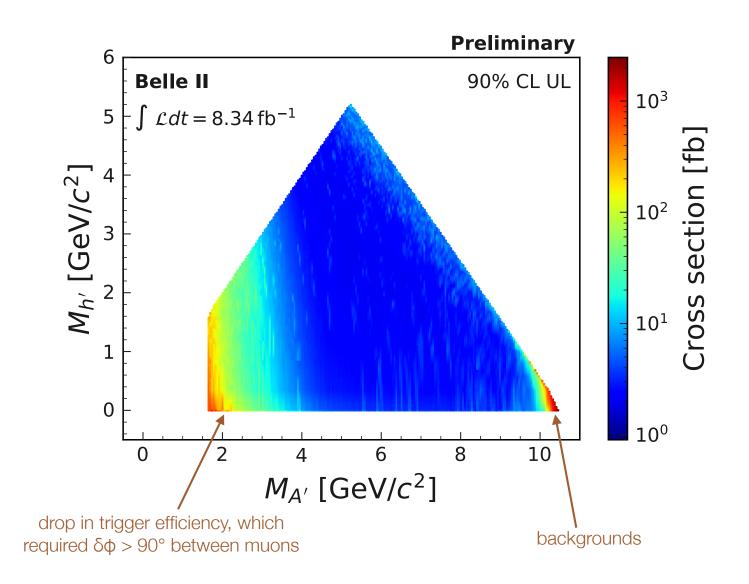
• Belle II will have unique sensitivity to regions of parameter space consistent with observed dark matter relic density.

Search for a dark photon and an invisible dark Higgs boson in $\mu^+\mu^-$ and missing energy final states with the Belle II experiment

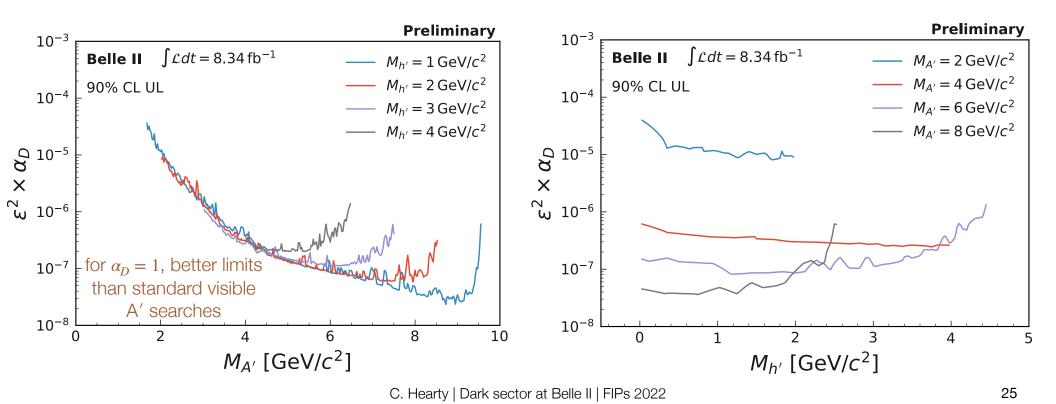

- Dark sector could also contain a dark Higgs h'.
- We consider the case where e^{-k} $-m_{A'} < 2m_{\chi} \Rightarrow A'$ decays to standard model; $-m_{h'} < m_{A'} \Rightarrow h'$ is long lived / invisible for not mix with Higgs).
- KLOE studied this configuration at lower mass; BaBar and Belle studied $m_{h'} > m_{A'}$; different signature.


Phys. Lett. B 747, 365 (2015) Phys. Rev. Lett. 108, 211801 (2012) Phys. Rev. Lett. 114, 211801 (2015)

- Signature: muon pair (only) plus missing momentum, but two masses (vs one for invisible Z'):
 - $m_{\mu^+\mu^-} = m_{A'};$
 - missing mass = $m_{h'}$.
- Backgrounds:
 - $\mu^+\mu^-(\gamma)$; - $\tau^+\tau^-(\gamma)$ with both $\tau \to \mu\nu\bar{\nu}$; - $e^+e^-\mu^+\mu^-$.
- Require missing momentum to be at wide angles; cut on angular distribution of muons.


Selected events

- Good agreement with simulation.
- Search for peak in 2D; no excess observed in 9003 ellipses.


Upper limits on cross sections

Belle II, "Search for a dark photon and an invisible dark
Higgs boson in µ+µ- and missing energy final states with the Belle II experiment", 2207.00509, submitted to PRL.

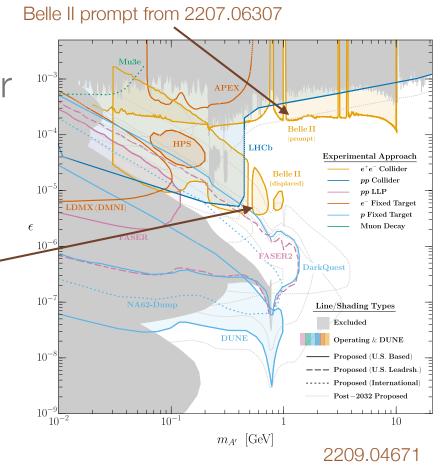
Limits on model parameters

- First limits for this mass range.
- Next update: much more data; good trigger efficiency at low mass.

Summary

- Belle II has accumulated a near-BaBar sized data set. Several world-leading dark sector results already completed.
 - ALP $\rightarrow \gamma\gamma$: PRL 125 (2020) 161806;
 - $Z' \rightarrow$ invisible: PRL 124 (2020) 141801 + update soon;
 - Z' / S / ALP \rightarrow tau pair: to be submitted soon;
 - dark Higgsstrahlung: 2207.00509, submitted to PRL.
- Projections show that Belle II has unique sensitivity to dark sector physics. We look forward to further increases to SuperKEKB luminosity following long shutdown 1.

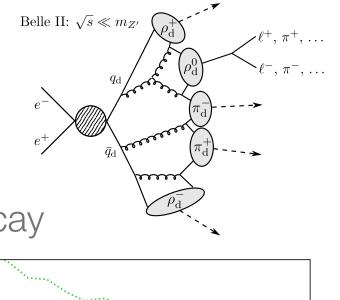
Backup

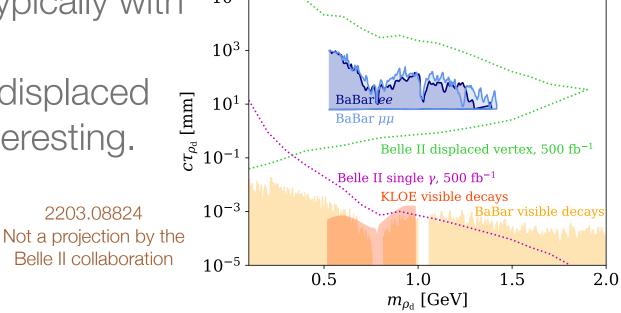

Outlook for Z' / scalar $\rightarrow \mu^+\mu^-$

- For Z' interpretation, (g-2)_µ explanation is already quite constrained by BaBar 4µ result. But leptophilic scalar (or one that couples only to muons) is not excluded.
- Scalar S \rightarrow $\mu^+\mu^-$ BR(S \rightarrow $\mu^+\mu^-$)=1, m_S>2m_µ 10^{-1} Belle II, with a few ab⁻¹, will Muon 3 TeV 10^{-2} have significant sensitivity Muon 500 Ge to the scalar models. 10-3 Belle 4µ S_{μ}^{o} ATLAS fixed-target JarkQuest(1020) 10^{-4} Not a projection by the Belle II collaboration m³ 10^{-5} Experimental App e*e- collide excluded e Fixed Targe operating exr DD LLP Proposed LIS pp collide roposed(US Lead.) Proposed(Int'l) 2207.08990 secondary µ fron Post-2032 F a-2 best fit 10^{-} 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{-3}

m_s(GeV)

Belle II sensitivity, visible dark photon decays

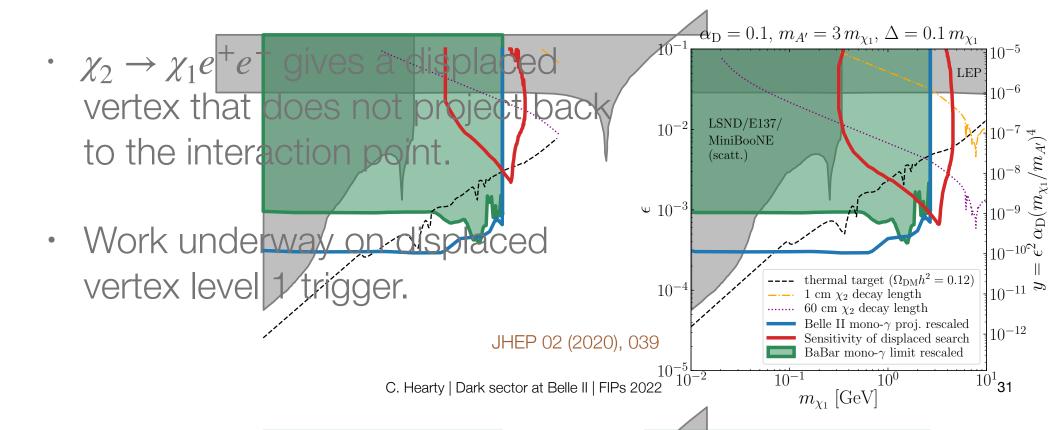

- Decay to standard model particles if decays to dark matter are forbidden. Belle II will have better mass resolution than BaBar due to larger drift chamber.
 - Not a projection by the Belle II collaboration
- Higher luminosity will give access to smaller couplings
 ⇒ longer lifetimes / displaced vertices / lower backgrounds.



Dark showers

- Dark sector may not be simple; e.g. dark guarks / dark hadrons.
- Dark pions are stable (dark matter); with appropriate masses, dark rhos decay to standard model, typically with 10^{5} displaced vertices. 10^{3}

- missing energy + displaced vertex is generally interesting.



2203.08824

Belle II collaboration

Inelastic dark matter

 Dark photon couples to a pair of dark matter states with small mass splitting.
 Evades direct detection limits.

 χ_1

 χ_2

 χ_1

A'

 $e^{-}, \mu^{-}, hadron$

 $e^+, \mu^+, hadron$