

Search for Matter Creation with $0\nu\beta\beta$ -decay (experimental overview)

Ruben Saakyan (UCL)

 $\rm FIPs~2022$

20-Oct-2022

Outline

- Introduction and Motivation
- $0\nu\beta\beta$ and neutrino physics, physics reach
- Experimental approaches
- Outlook and international landscape

Disclaimer:

- Vibrant field: impossible to do justice to all projects
- Focus on giving an overview of most promising techniques and convey excitement about physics reach, with breakthroughs potentially around the corner

UCL

The Big Questions

Proton Decay: "Disappearance" of nucleons $\mathcal{B} = \mathcal{N}_{baryons} - \mathcal{N}_{anti-baryons}$

Neutrinoless Double Beta Decay $(0\nu\beta\beta)$ "Creation" of electrons $\mathcal{L} = \mathcal{N}_{leptons} - \mathcal{N}_{anti-leptons}$

L and B-L non-conservation

- Crucial for understanding *dominance of matter* over anti-matter
- Crucial for understanding mechanism behind *v-mass* (*Majorana* vs **Dirac**)
- $0\nu\beta\beta$ is the most sensitive way to address Lepton Number Violation *regardless* of underlying mechanism

η can be due to $< m_{\beta\beta} >$, V + A, Majoron, SUSY, H^- , leptoquarks <u>or a combination of them</u>

Schechter and Valle, 1982:

Observation is <u>unambiguous evidence</u> for <u>non-zero Majorana mass</u> (even if it is not dominating mechanism)

Double Beta Decay

Abstract

From the Fermi theory of β-disintegration the probability of simultaneous emission of two electrons (and two neutrinos) has been calculated. The result is that this process occurs sufficiently rarely to allow a half-life of over 10¹⁷ years for a nucleus, even if its isobar of atomic number different by 2 were more stable by 20 times the electron mass.

Double beta-Disintegration, Phys.Rev. 48:512-16 (1935)

Over 40 nuclei can
undergo ββ- decay
(including $\beta^+\beta^+$ and $2K$ -
capture)
Only ~ 9 experimentally
feasible for $0\nu\beta\beta$

Isotope	Daughter	$Q_{etaeta}{}^{\mathbf{a}}$	${f_{\mathrm{nat}}}^{\mathbf{b}}$	$f_{\rm enr}{}^{\rm c}$
		$[\mathrm{keV}]$	[%]	[%]
48 Ca	$^{48}\mathrm{Ti}$	4267.98(32)	0.187(21)	16
$^{76}\mathrm{Ge}$	$^{76}\mathrm{Se}$	2039.061(7)	7.75(12)	92
82 Se	82 Kr	2997.9(3)	8.82(15)	96.3
$^{96}\mathrm{Zr}$	$^{96}\mathrm{Mo}$	3356.097(86)	2.80(2)	86
^{100}Mo	100 Ru	3034.40(17)	9.744(65)	99.5
116 Cd	116 Sn	2813.50(13)	7.512(54)	82
$^{130}\mathrm{Te}$	130 Xe	2527.518(13)	34.08(62)	92
136 Xe	136 Ba	2457.83(37)	8.857(72)	90
150 Nd	$^{150}\mathrm{Sm}$	3371.38(20)	5.638(28)	91

If possible: individual electron energies, E_{e1} , E_{e2} , and angle θ between them

$0\nu\beta\beta$: Light Majorana neutrino mass, $m_{\beta\beta}$

$$P \propto rac{1}{T_{1/2}} \propto G \, g^4 \, M^2 igg(rac{m_{etaeta}}{m_e} igg)^2$$

$$m_{\beta\beta} = \left| \sum_{i} U_{ei}^{2} m_{i} \right| = \left| c_{12}^{2} c_{13}^{2} m_{1} + s_{12}^{2} c_{13}^{2} m_{2} e^{i2\alpha} + s_{13}^{2} m_{3} e^{i2\beta} \right|$$
$$c_{12} = \cos\theta_{12}, c_{13} = \cos\theta_{13}, s_{12} = \sin\theta_{12}, s_{13} = \sin\theta_{13}$$

 $m_{1,2,3} \rightarrow \text{mass eigenstates} \quad \alpha, \beta \rightarrow \text{Majorana CP-phases}$

- Minimal extension of SM
- Access to absolute neutrino mass
- Reach interplay with neutrino oscillations, kinematic measurements (m_{\beta}), cosmology (Σ)

$0\nu\beta\beta$: Connection with Nuclear Physics

$$P \propto \frac{1}{T_{1/2}} \propto G \, g^4 M^2 \bigg(\frac{m_{\beta\beta}}{m_e} \bigg)^2$$
 nuclear matrix element (NME)

- Significant effort from different groups and different nuclear models
- Question of gA quenching under study
- No isotope has clear preference. Choice driven by experimental considerations.
- Multiple isotope confirmation crucial
- Experimental input important
 - » $2\nu\beta\beta$ decay
 - $\,\gg\,$ charge exchange reactions
 - » muon capture

$0\nu\beta\beta$: Generic test for L-violating BSM physics

- Any new L-violating physics can result in $0\nu\beta\beta$ (access to ultra-high energy BSM)
- That includes Heavy Neutral Leptons and many other (see F. Deppisch talk)

$0\nu\beta\beta$: Generic test for L-violating BSM physics

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 Cosine of angle between electrons

 $< m_v >$

V+A

SuperNEMO Collaboration EPJ C (2010) 70, pp. 972-943.

R.Saakyan. 0vbb Experimental Overview. FIPs 2022.

0.2

$0\nu\beta\beta$: Light Majorana neutrino mass, $m_{\beta\beta}$ and neutrino mass ordering

$0\nu\beta\beta$ with $\mathbf{m}_{\boldsymbol{\beta}\boldsymbol{\beta}}$ Where are we so far

UCL

$0\nu\beta\beta$ with $m_{\beta\beta}$ Where are we heading

PRC 104, L042501 (2021)

Cosmology surveys (DESI/EUCLID) closing in

Combined

LEGEND nEXO

 $\Sigma = 59 \pm 20 \text{ meV}$

Future Scenario

CUPID

on positive measurement for Σ $\Sigma = \sum_{i} m_{i}$ 0.8 0.07 ^{0.07} ودر] Discovery Probability 0.6 Ŧ 0.05 0.4 0.04 Ŧ 0.03 0.2 LEGEND 0.02 CUPID 0.0 0.01 n**EX** Σ is $\Sigma \leq 120 \text{ meV}$ $\Sigma = 100 \pm 20 \text{ meV}$ unconstrained Current Scenario Future Scenario 0 0.05 0.3 0.1 0.15 0.2 0.25 $\Sigma [eV]$ arXiv: 2208.09954

arXiv:2202.01787

Experimental Approaches

Detection Principles

Image courtesy M. Agostini

R.Saakyan. 0vbb Experimental Overview. FIPs 2022.

arXiv:2202.01787

LIGHT

ABSORBER

HEATH BATH

THERMAL

SENSOR

Leading Experimental Techniques

Drawings courtesy of Laura Manenti

Enriched Ge semiconductor detectors

high-purity ⁷⁶Ge detectors

- ionization and charge drift
- < 0.1% energy resolution
- event topology

liquid Ar detector

• shield and scintillation light

Staged approach:

- **GERDA/MAJORANA** Demonstrator (40 kg)
- LEGEND-200 under commissioning (200 kg)
- LEGEND-1000 conceptual design in preparation (1 t)

R.Saakyan. 0vbb Experimental Overview. FIPs 2022.

Cryogenic Calorimeters

- array of isotopically enriched crystals operated at ~10 mK
- thermal and scintillation signal
- particle ID and good energy resolution
- Leading results for ¹³⁰Te and ⁸²Se, future focus on ¹⁰⁰Mo

Experiment	Crystal	m_{tot}	f_{enr}
		[kg]	[%]
CUORE	$^{\rm nat}{ m TeO_2}$	742	$34^{\mathbf{a}}$
CUPID-0	$\mathrm{Zn}^{\mathrm{enr}}\mathrm{Se}$	9.65	96
CUPID-Mo	${\rm Li_2}^{\rm enr}{ m MoO_4}$	4.16	97
CROSS	${\rm Li_2}^{\rm enr}{ m MoO_4}$	8.96	98
CUPID	${\rm Li_2}^{\rm enr}{ m MoO_4}$	472	≥ 95
AMoRE	${\rm Li_2}^{\rm enr}{\rm MoO_4}$	200	96

Enriched Xe TPCs

- ¹³⁶Xe VUV scintillation light and ionization electron drift -> 3D reconstruction
- background decreasing with distance from surface, ²¹⁴Bi and ²²²Rn remain problematic
- R&D to tag $0\nu\beta\beta$ decay daughter isotope

Experiment	m_{tot}	$f_{ m enr.}$	Phase	Readout
	[kg]	[%]		
EXO-200	161	81	liquid	LAPPDs + wires
nEXO	5109	90	liquid	electrode tiles $+$ SiPM s
NEXT-100	97	90	gas	SiPMs + PMTs
NEXT-HD	1100	90	gas	SiPMs + PMTs
PandaX-III-200	200	90	gas	Micromegas
PandaX-III-1K	1000	90	gas	Micromegas
LZ-nat	7000	9	dual-phase	PMTs
LZ-enr	7000	90	dual-phase	PMTs
DARWIN	39300	9	dual-phase	\mathbf{PMTs}
9				

-100 -80 -60 X (mm)

ษิ

-40

2e

140

120

-40 1e

-8

-100

-120

-120

100 X (mm) R.Saakyan. 0vbb Experimental Overview. FIPs 2022.

Large loaded liquid scintillators

- scintillator loaded with target isotope
- scintillation photons detected by PMTs
- photon number and arrival time gives event • energy and position
- self-shielding and fiducialization
- Broad physics program (e.g. solar, reactor, geo-neutrinos)

KZ collaboration, 2203.02139

 $T_{1/2}^{0\nu} > 2.3 \times 10^{26} \,\mathrm{yr} \mathrm{ at} \; 90\% \mathrm{ C.L.}$

KamLAND-Zen-800 @Kamioka (¹³⁶Xe)

- 750 kg of enriched Xe in nylon balloon
- Strongest constraints so far: $m_{BB} < 36-156 \text{ meV}$
- backgrounds:, cosmogenic, solar neutrinos, ²¹⁴Bi on balloon
- next phase: improved resolution and purer scintillator

Planning for success $(m_{\beta\beta} \gtrsim 50 \text{ meV})$

NEMO-technique: full topology reconstruction of final states

- **Multi-isotope** confirmation
- Exploring underlying **physics mechanism**
 - Angular distributions
 - Single electron energies
- Constraining nuclear physics \rightarrow NME and g_A through precision $2\nu\beta\beta$ studies
- **BSM** physics with **2νββ** (*Phys.Rev.Lett.125* (2020) 17, 171801)

SuperNEMO-Demonstrator $running \ {\rm at} \ {\rm LSM}$

The Big 4 of last decade: **GERDA**, **EXO-200**, **KamLAND-Zen-400**, **CUORE** The two to watch: **LEGEND-200**, **KamLAND-Zen-800** The ultimate I.O. experiments: **LEGEND-1000**, **CUPID**, **nEXO**

Scenario 1: signal just beyond current limits

- discovery within few years
- precise rate measurement with next-gen experiments
- Access to underlying mechanism with SNEMO-like technique

Scenario 2: signal at bottom of I.O.

need R&D to measure decay features

Scenario 3: signal in N.O. (or absent)

- R&D and new ideas for convincing discovery •
- interplay with oscillation experiments and cosmology can lead to lacksquarebreakthroughs even in absence of signal

International Landscape

DOE NP Portfolio Review

LEGEND-1000 NEXO

10 Feb 2020

^{ar}Xiv:1910.04688v2 lhe_l

https://agenda.infn.it/event/27143/

https://science.osti.gov/mp/nsac

Community Summer Study July 17-26 2022, Seattle the state

https://arxiv.org/abs/1910.04680

Double Beta Decay APPEC Committee

IUPAP Neutrino Panel White Paper

Concluding Remarks

- $0\nu\beta\beta$ is the best way to probe Lepton Number Violation and its connection to preponderance of matter and neutrino mass generation mechanism
- Huge progress over past decade has led to a **coordinated international effort**
 - Phased approach, convergence on experiments fully covering I.O. sensitivity
 - Continuing R&D to tackle N.O. and detailed exploration of signal
 - Strong effort in NME modelling, ab initio calculations, experimental input
- Interplay with oscillations, cosmology and β -decay results yields a significant likelihood of **discovery in next 2-15 years**!
- $0\nu\beta\beta$ could be driven by a different LNV mechanism open minded, **discovery** oriented search

Additional Material

Different ways of measuring absolute neutrino mass

arXiv:2202.01787

UCL

LEGEND 10 t.yr exposure

HPGe point-like detectors

UCL

