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Discovering heavy neutral leptons



The seesaw mechanism and the Majorana neutrino mixing
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Realistic benchmarks




Sensitivity of experiments highly depends on mixing ratios:
NA62 in beam dump mode
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Sensitivity of experiments highly depends on mixing ratios:

ATLAS
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Constraints from the seesaw mechanism
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ratios are completely determined by
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ratios dominated by Majorana phase
n, Dirac phase § and 623

- allowed ratios become smaller as we

pin down the PMNS parameters

How to choose future-proof
benchmarks?
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Future sensitivity?

- significant improvement
expected with DUNE and HyperK

- we can use the sensitivity
estimates to estimate how the
allowed flavor ratios change
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New Benckmark Points

[Figure from 2207.02742]
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- Common benchmarks can used to

compare the reach of different
searches

Reinterpretations still highly
desirable [see talk by JL Tastet]
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Flavor constraints from leptogenesis
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Input from cosmology: low-scale
leptogenesis
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Results: The minimal model with 2 RHNs
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in resonant leptogenesis freeze-out (HNL decays) dominates,
we can start with thermal initial conditions
leptogenesis via oscillations is freeze-in dominated,
we neglect HNLs falling out of equilibrium
results depend on low-energy CP phases:
optimal phases § = 0and n = w /2

less overlap foreg. 6 = wandn =0
maximal AM/M < 10~ —»1073

overall agreement with analytic approximations from [2207.01651] [see talk by S. Sandner] b
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Results: The minimal model with 2 RHNs
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Results: Leptogenesis with 3 RHNs

1074

10°°

10-10

Low-scale Leptogenesis
10712 4 ---ee 2 HNLs, thermal

—— 2 HNLs, vanishing
Y A 3 HNLs, thermal A
1079 —— 3 HNLs, vanishing W

1071 100 10! 10? 10% 10*
M [GeV]

[ Snowmass White Paper 2203.08039]

leptogenesis bounds from [ Drewes/Georis/JK 2106.16226]

for experimentally accessible heavy neutrino masses, all U? are allowed
both freeze-in and freeze-out leptogeneses already testable at existing experiments
the maximal value of U2 depends on m1
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Results: Leptogenesis with 3 RHNs
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From discovery to tests




Measuring the mass splitting in model with 2 HNLs
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- large range of AM

consistent with
leptogenesis

- energy resolution of

planned experiments -
AM/M ~ O(few%)

- Higgs vev contribution to

RHN mass difference

A Myg practically implies
lower limit on the mass
splitting
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Measuring the mass splitting in model with 2 HNLs
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Measuring flavor ratios at experiments
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Complementarity with neutrinoless double beta decay
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normal hierarchy

- “IH" benchmark close to maximal

mgg for inverted hierarchy
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3 HNLs: range of mixing angles U? and mass splittings AM
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through a combination of
baryogenesis + fine tuning
constraints

- leptogenesis consistent

with both LNV and LNC RHN
decays

- nontrivial LNV/LNC ratios

can further constrain the
RHN parameters



3 HNLs: range of mixing angles U? and mass splittings AM
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RHN parameters



Conclusions

- experimental sensitivities differ depending on flavor ratios

- tools for reinterpretation are highly desirable

- proposed new benchmarks for HNL searches

- when accesible LNV is an important observable Ry,

- leptogenesis is a viable baryogenesis mechanism for all
heavy neutrino masses above the O(100) MeV scale

- leptogenesis is within reach at planned future
experiments

- synergy between high-energy and high-intensity frontiers!
- together they can cover a large portion of the low-scale
leptogenesis parameter space



Thank you!



Large mixing angles and approximate B-L symmetry

- large U2 require Pseudo-Dirac pairs

cancellations between

different entries of the e = Nl;ﬁNQN - Lﬂm
Yukawa matrices F

- this cancellation can be —
3ssociated with an B-L parametrisation
approximate lepton e o
number symmetry MM—M< o iy 5)

[Shaposhnikov hep-ph/0605047, Kersten Smirnov
0705.3221, Moffat Pascoli Weiland 1712.07611]

1 Fe(1 +ee) iFe(l — ee) Feel,
F = Fu(l+eu) Fu(l—eu) Fue,

- symmetry broken by small T sy e

parameters e, €, u,



- If present, symmetries are manifest to all orders in p.t.

- in the case of a large B-L breaking, radiative corrections
can cause large neutrino masses

- we can use the size of radiative corrections to the light
neutrino masses to quantify tuning

Fine Tuning

2
\Ji(mloop mtree)
loop
=1 mz



Slices of the parameter space

AM/M

101 F
103 |
10~5 L
107 |
109 f
1011 B
1013
10~15 L

1077 |

10-19

M=10.0 GeV

- two characteritic mass

splittings

- mass splitting induced by

the Higgs A My

- mass splitting induced by

RG running 6 Mra
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Slices of the parameter space

AM/M

101 F
103 |
10~5 L
107 |
109 f
1011 F
1013 £
10~15 L

1077 |

10-19

M =1000.0 GeV

- two characteritic mass

splittings

- mass splitting induced by

the Higgs A My

- mass splitting induced by

RG running 6 Mra



Results: Leptogenesis with 3 RHN (Normal Ordering)

[ T T
>

10~

10-¢

.

S 1078
10—10?
= NO
10—127 . Lo - e
10! 1 10
Ml[GEV]
f.t.

10-¢ 10 1072 1

[Abada/Arcadi/Domcke/Drewes/)K/Lucente 1810.12463]



Hierarchy in the washout

- lepton asymmetry can
survive washout if hidden
in a particular flavor

M 10NO
m20NO
30 NO

m10l10
m2010
3010

- washout suppression

L
- T U2
- for 2RHN § > 5 x 103 [Snowmass White Paper 2203.08039]

[Drewes/Garbrecht/Gueter/JK 1609.09069]

- for 3 RHN § « 1 possible

[Caputo/Hernandez/Lopez-Pavon/Salvado 1704.08721]



Hierarchy in the washout

3 RHNs:

- lepton asymmetry can
survive washout if hidden
in a particular flavor

- washout suppression

Lo Us
VE

—
I1l

[ Drewes/Georis/JK 220x.xxxx]

« for2 RHN § > 5 x 1073
[Chrzaszcz/ Drewes/Gonzalo/Harz/Krishna-

: for 3 RHN f < 1 pOSSible murthy/Weniger 1908.02302]



Hierarchy in the washout

- lepton asymmetry can
survive washout if hidden
in a particular flavor

- washout suppression

Lo Us
VE

—
I1l

« for2 RHN § > 5 x 1073
- for 3 RHN § <« 1 possible

3 RHNs:

m;=0.03 eV

[ Drewes/Georis/JK 220x.xxxx]
[Chrzaszcz/ Drewes/Gonzalo/Harz/Krishna-

murthy/Weniger 1908.02302]



Enhancement due to level crossing

- inthe B — L symmetric limit two heavy neutrinos form a
pseudo-Dirac pair

- the “3rd” heavy neutrino can be heavier than the
pseudo-Dirac pair

- for T > Tgw, the pseudo-Dirac pair also has a thermal
mass

envalues of (H) [GeV]

1074
-6
10

1078
1072

§ 10 / .
2
10 0.001 0.010  0.100 1 —

T > Tew T < Tpw
1071
N.




Enhancement due to level crossing

Heavy Neutrino Densities Lepton flavour asymmetries
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Indirect probes: Charged LFV

i (BV)eil

% (RV)

[Granelli/JK/Petcov 2206.04342]
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pAL—eAl
nTi—eTi
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10*

parameters space in the TeV region already severly constrained by cLFV observables
future p — e conversion experiments can probe a large part of the N = 3 parameter space



Indirect probes: Charged LFV

ol my=0.03eV
10 :
107}
_ 107k
T
< 10
S: 107
* 3
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107 '
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10 10! 10° 10* 10? 10° 10*
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[Granelli/JK/Petcov 2206.04342]

parameters space in the TeV region already severly constrained by cLFV observables
- future p — e conversion experiments can probe a large part of the N = 3 parameter space
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