

Heavy Neutral Leptons:

the FIP Physics Centre approach

Juraj Klarić FIPs workshop, October 21st 2022

Some puzzles for physics beyond the Standard Model

Neutrino masses

The Baryon Asymmetry of the Universe

$$n_B/n_{\gamma} = 6.05(7) \times 10^{-10}$$

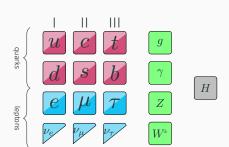


Image credits: Kamioka Observatory, ICRR, U. Tokyo; ESA and the Planck Collaboration

Some puzzles for physics beyond the Standard Model

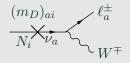
Neutrino masses

[Minkowski 1977...]

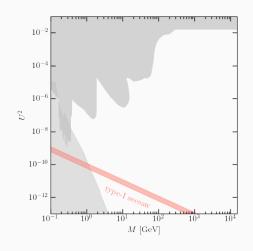
The Baryon Asymmetry of the Universe

quarks d S b γ leptons ψ_{N_3} ψ_{N_3} ψ_{N_3} ψ_{N_3} ψ_{N_4}

[Fukugita/Yanagida '86...]


Image credits: Kamioka Observatory, ICRR, U. Tokyo; ESA and the Planck Collaboration

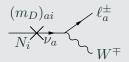
Discovering heavy neutral leptons


Active neutrino masses

$$m_{\nu} = -m_D M_M^{-1} m_D^T$$

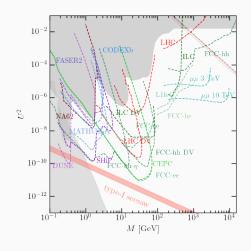
HNL mixing

$$\begin{aligned} U_{ai}^2 &\equiv \left| \left(m_D M_M^{-1} \right)_{ai} \right|^2 \\ U^2 &= \sum_{a,i} U_{ai}^2 \end{aligned}$$


[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]

[see talks by A. Marocco, B. Dey, A. Golutvin, E. Goudzovski, A. Paolini,

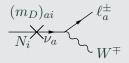
Active neutrino masses


$$m_{\nu} = -m_D M_M^{-1} m_D^T$$

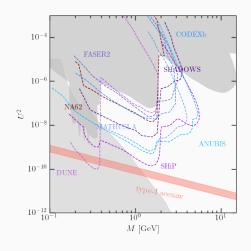
HNL mixing

$$U_{ai}^{2} \equiv \left| \left(m_{D} M_{M}^{-1} \right)_{ai} \right|^{2}$$

$$U^{2} = \sum_{a,i} U_{ai}^{2}$$


[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]

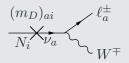
[see talks by A. Marocco, B. Dey, A. Golutvin, E. Goudzovski, A. Paolini,


Active neutrino masses

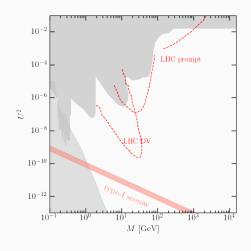
$$m_{\nu} = -m_D M_M^{-1} m_D^T$$

HNL mixing

$$\begin{split} U_{ai}^2 &\equiv \left| \left(m_D M_M^{-1} \right)_{ai} \right|^2 \\ U^2 &= \sum_{a,i} U_{ai}^2 \end{split}$$


[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]

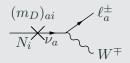
[see talks by A. Marocco, B. Dey, A. Golutvin, E. Goudzovski, A. Paolini,


Active neutrino masses

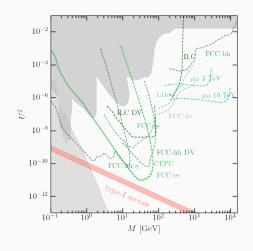
$$m_{\nu} = -m_D M_M^{-1} m_D^T$$

HNL mixing

$$U_{ai}^2 \equiv \left| \left(m_D M_M^{-1} \right)_{ai} \right|^2$$
$$U^2 = \sum_{a,i} U_{ai}^2$$


[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]

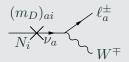
[see talks by A. Marocco, B. Dey, A. Golutvin, E. Goudzovski, A. Paolini,


Active neutrino masses

$$m_{\nu} = -m_D M_M^{-1} m_D^T$$

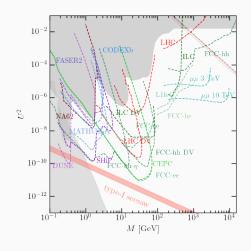
HNL mixing

$$U_{ai}^2 \equiv \left| \left(m_D M_M^{-1} \right)_{ai} \right|^2$$
$$U^2 = \sum_{a,i} U_{ai}^2$$


[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]

[see talks by A. Marocco, B. Dey, A. Golutvin, E. Goudzovski, A. Paolini,

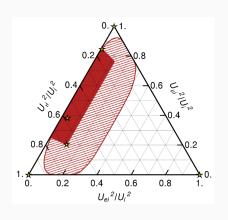
Active neutrino masses

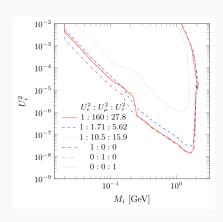

$$m_{\nu} = -m_D M_M^{-1} m_D^T$$

HNL mixing

$$U_{ai}^{2} \equiv \left| \left(m_{D} M_{M}^{-1} \right)_{ai} \right|^{2}$$

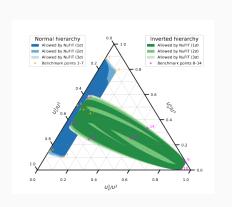
$$U^{2} = \sum_{a,i} U_{ai}^{2}$$

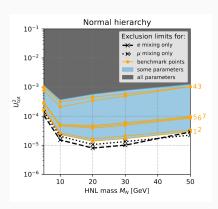



[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]

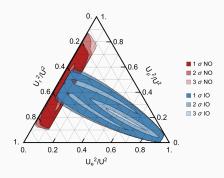
[see talks by A. Marocco, B. Dey, A. Golutvin, E. Goudzovski, A. Paolini,

Realistic benchmarks


Sensitivity of experiments highly depends on mixing ratios: NA62 in beam dump mode

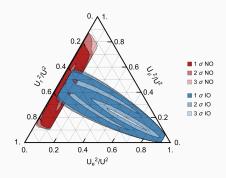


[Drewes/Hajer/JK/Lanfranchi 1801.04207]


Sensitivity of experiments highly depends on mixing ratios: ATLAS

[Tastet/Ruchayskiy/Timiryasov 2107.12980] [see also talk by JL Tastet]

Constraints from the seesaw mechanism

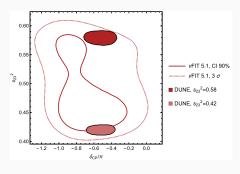


[Drewes/JK/Lopez-Pavon 2207.02742]

[using nuFIT 5.1 2007.14792]

- in the minimal seesaw model the ratios are completely determined by $\ensuremath{U_{PMNS}}$
- ratios dominated by Majorana phase η , Dirac phase δ and θ_{23}
- allowed ratios become smaller as we pin down the PMNS parameters
- How to choose future-proof benchmarks?

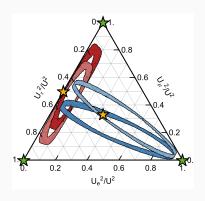
Constraints from the seesaw mechanism

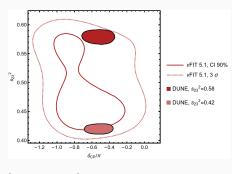

[Drewes/JK/Lopez-Pavon 2207.02742]

[using nuFIT 5.1 2007.14792]

- in the minimal seesaw model the ratios are completely determined by U_{PMNS}
- ratios dominated by Majorana phase η , Dirac phase δ and θ_{23}
- allowed ratios become smaller as we pin down the PMNS parameters
- How to choose future-proof benchmarks?

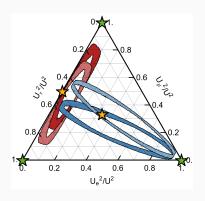
Future sensitivity?

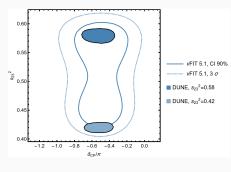

- significant improvement expected with DUNE and HyperK
- we can use the sensitivity estimates to estimate how the allowed flavor ratios change


[nuFIT 5.1 2007.14792]

[DUNE TDR 2002.03005]

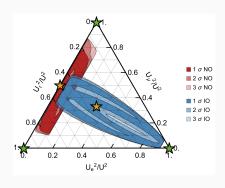
Future sensitivity?


[Figure from 2207.02742]


[nuFIT 5.1 2007.14792]

[DUNE TDR 2002.03005]

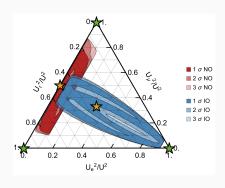
Future sensitivity?


[Figure from 2207.02742]

[nuFIT 5.1 2007.14792]

[DUNE TDR 2002.03005]

New Benckmark Points


[Figure from 2207.02742]

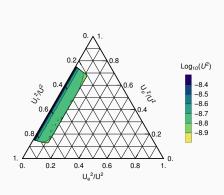
- · selection criteria:
 - 1. consistency with ν -osc. data
 - 2. added value
 - 3. symmetry considerations
 - 4. simplicity
 - 5. leptogenesis
- in addition to the single flavor benchmarks, we propose the new points:

$$U_e^2: U_\mu^2: U_\tau^2 = 0:1:1$$

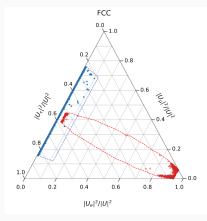
 $U_e^2: U_\mu^2: U_\tau^2 = 1:1:1$

- Common benchmarks can used to compare the reach of different searches
- Reinterpretations still highly desirable [see talk by JL Tastet]

New Benckmark Points


[Figure from 2207.02742]

- · selection criteria:
 - 1. consistency with ν -osc. data
 - 2. added value
 - 3. symmetry considerations
 - 4. simplicity
 - 5. leptogenesis
- in addition to the single flavor benchmarks, we propose the new points:

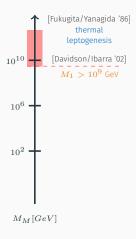

$$U_e^2: U_\mu^2: U_\tau^2 = 0:1:1$$

 $U_e^2: U_\mu^2: U_\tau^2 = 1:1:1$

- Common benchmarks can used to compare the reach of different searches
- Reinterpretations still highly desirable [see talk by JL Tastet]

Flavor constraints from leptogenesis

[Antusch/Cazzato/Drewes/Fischer/Garbrecht/Gueter/JK 1710.03744]

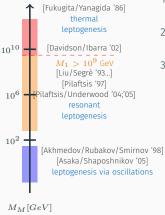


$$\Delta M/M = 10^{-2}$$

[Hernandez/Lopez-Pavon/Rius/Sandner 2207.01651]

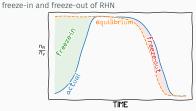
leptogenesis

Input from cosmology: low-scale

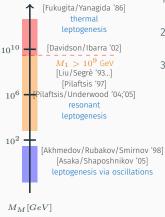


Sakharov conditions

- Baryon number violation sphaleron processes
- 2. C and CP violation RHN decays and oscillations
- 3. Deviation from thermal equilibrium freeze-in and freeze-out of RHN

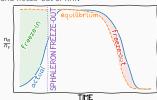


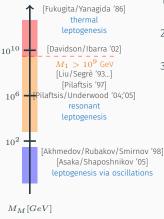
 \cdot for hierarchical RHN $M_1 \gtrsim 10^9$ GeV



Sakharov conditions

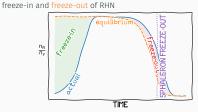
- Baryon number violation sphaleron processes
- C and CP violation RHN decays and oscillations
- 3. Deviation from thermal equilibrium


- for hierarchical RHN $M_1 \gtrsim 10^9$ GeV
- · leptogenesis works in a wide range of RHN masses

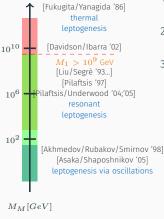

Sakharov conditions

- Baryon number violation sphaleron processes
- C and CP violation RHN decays and oscillations
- 3. Deviation from thermal equilibrium

freeze-in and freeze-out of RHN

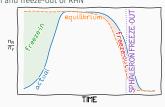


- for hierarchical RHN $M_1 \gtrsim 10^9$ GeV
- · leptogenesis works in a wide range of RHN masses

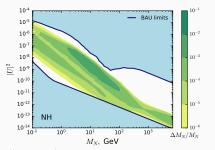


akharov conditions

- Baryon number violation sphaleron processes
- C and CP violation RHN decays and oscillations
- 3. Deviation from thermal equilibrium

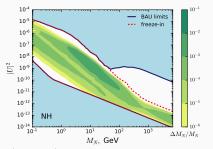


- for hierarchical RHN $M_1 \gtrsim 10^9$ GeV
- · leptogenesis works in a wide range of RHN masses



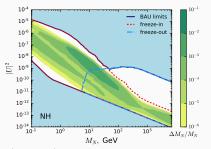
Sakharov conditions

- Baryon number violation sphaleron processes
- 2. C and CP violation RHN decays and oscillations
- 3. Deviation from thermal equilibrium freeze-in and freeze-out of RHN


- \cdot for hierarchical RHN $M_1 \gtrsim 10^9$ GeV
- · leptogenesis works in a wide range of RHN masses
- how are the low-scale mechanisms connected?

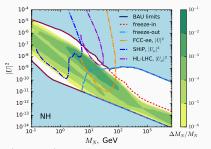
[JK/Timiryasov/Shaposhnikov 2103.16545]

- baryogenesis possible for all masses above 100 MeV!
- two main contributions to the BAU, from freeze-in and freeze-out
- there is significant overlap of the two regimes


- in resonant leptogenesis freeze-out (HNL decays) dominates, we can start with thermal initial conditions
- leptogenesis via oscillations is freeze-in dominated, we neglect HNLs falling out of equilibrium
- results depend on low-energy CP phases:
 - · optimal phases $\delta=0$ and $\eta=\pi/2$
 - · less overlap for e.g. $\delta=\pi$ and $\eta=0$
 - · maximal $\Delta M/M \lesssim 10^{-1} \rightarrow 10^{-3}$
- overall agreement with analytic approximations from [2207.01651] [see talk by S. Sandner]

[JK/Timiryasov/Shaposhnikov 2103.16545]

- baryogenesis possible for all masses above 100 MeV!
- two main contributions to the BAU, from freeze-in and freeze-out
- there is significant overlap of the two regimes


- in resonant leptogenesis freeze-out (HNL decays) dominates, we can start with thermal initial conditions
- leptogenesis via oscillations is freeze-in dominated, we neglect HNLs falling out of equilibrium
- results depend on low-energy CP phases:
 - · optimal phases $\delta=0$ and $\eta=\pi/2$
 - · less overlap for e.g. $\delta=\pi$ and $\eta=0$
 - · maximal $\Delta M/M \lesssim 10^{-1} \rightarrow 10^{-3}$
- overall agreement with analytic approximations from [2207.01651] [see talk by S. Sandner]

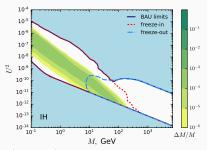
[JK/Timiryasov/Shaposhnikov 2103.16545]

- baryogenesis possible for all masses above 100 MeV!
- two main contributions to the BAU, from freeze-in and freeze-out
- there is significant overlap of the two regimes


- in resonant leptogenesis freeze-out (HNL decays) dominates, we can start with thermal initial conditions
- leptogenesis via oscillations is freeze-in dominated, we neglect HNLs falling out of equilibrium
- results depend on low-energy CP phases:
 - · optimal phases $\delta=0$ and $\eta=\pi/2$
 - · less overlap for e.g. $\delta=\pi$ and $\eta=0$
 - · maximal $\Delta M/M \lesssim 10^{-1} \rightarrow 10^{-3}$
- overall agreement with analytic approximations from [2207.01651] [see talk by S. Sandner]

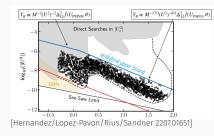
[JK/Timiryasov/Shaposhnikov 2103.16545]

- baryogenesis possible for all masses above 100 MeV!
- two main contributions to the BAU, from freeze-in and freeze-out
- there is significant overlap of the two regimes

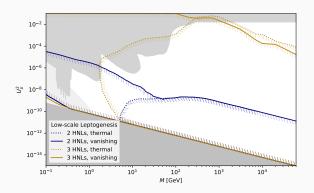

- in resonant leptogenesis freeze-out (HNL decays) dominates, we can start with thermal initial conditions
- leptogenesis via oscillations is freeze-in dominated, we neglect HNLs falling out of equilibrium
- results depend on low-energy CP phases:
 - · optimal phases $\delta=0$ and $\eta=\pi/2$
 - · less overlap for e.g. $\delta=\pi$ and $\eta=0$
 - · maximal $\Delta M/M \lesssim 10^{-1} \rightarrow 10^{-3}$
- overall agreement with analytic approximations from [2207.01651] [see talk by S. Sandner]

[JK/Timiryasov/Shaposhnikov 2103.16545]

- baryogenesis possible for all masses above 100 MeV!
- two main contributions to the BAU, from freeze-in and freeze-out
- there is significant overlap of the two regimes


- in resonant leptogenesis freeze-out (HNL decays) dominates, we can start with thermal initial conditions
- leptogenesis via oscillations is freeze-in dominated, we neglect HNLs falling out of equilibrium
- results depend on low-energy CP phases:
 - · optimal phases $\delta=0$ and $\eta=\pi/2$
 - · less overlap for e.g. $\delta=\pi$ and $\eta=0$
 - · maximal $\Delta M/M \lesssim 10^{-1} \rightarrow 10^{-3}$
- · overall agreement with analytic approximations from [2207.01651] [see talk by S. Sandner]

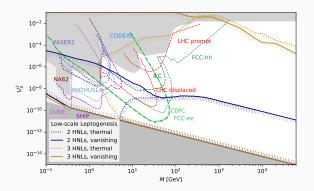
[JK/Timiryasov/Shaposhnikov 2103.16545]


- baryogenesis possible for all masses above 100 MeV!
- two main contributions to the BAU, from freeze-in and freeze-out
- there is significant overlap of the two regimes

- in resonant leptogenesis freeze-out (HNL decays) dominates, we can start with thermal initial conditions
- leptogenesis via oscillations is freeze-in dominated, we neglect HNLs falling out of equilibrium
- results depend on low-energy CP phases:
 - · optimal phases $\delta=0$ and $\eta=\pi/2$
 - · less overlap for e.g. $\delta=\pi$ and $\eta=0$
 - · maximal $\Delta M/M \lesssim 10^{-1} \rightarrow 10^{-3}$
- overall agreement with analytic approximations from [2207.01651] [see talk by S. Sandner]

- baryogenesis possible for all masses above 100 MeV!
- two main contributions to the BAU, from freeze-in and freeze-out
- there is significant overlap of the two regimes
- in resonant leptogenesis freeze-out (HNL decays) dominates, we can start with thermal initial conditions
- leptogenesis via oscillations is freeze-in dominated, we neglect HNLs falling out of equilibrium
- · results depend on low-energy CP phases:
 - · optimal phases $\delta=0$ and $\eta=\pi/2$
 - · less overlap for e.g. $\delta=\pi$ and $\eta=0$
 - · maximal $\Delta M/M \lesssim 10^{-1} \rightarrow 10^{-3}$
- overall agreement with analytic approximations from [2207.01651] [see talk by S. Sandner]

Results: Leptogenesis with 3 RHNs

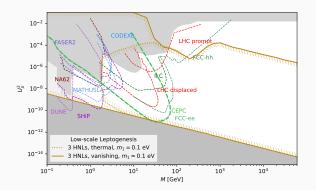


[Snowmass White Paper 2203.08039]

leptogenesis bounds from [Drewes/Georis/JK 2106.16226]

- for experimentally accessible heavy neutrino masses, all U^2 are allowed
- · both freeze-in and freeze-out leptogeneses already testable at existing experiments
- the maximal value of U^2 depends on m_1

Results: Leptogenesis with 3 RHNs

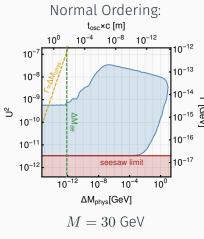


[Snowmass White Paper 2203.08039]

leptogenesis bounds from [Drewes/Georis/JK 2106.16226]

- \cdot for experimentally accessible heavy neutrino masses, all U^2 are allowed
- · both freeze-in and freeze-out leptogeneses already testable at existing experiments
- the maximal value of U^2 depends on m_1

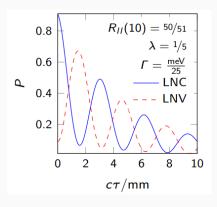
Results: Leptogenesis with 3 RHNs


[Snowmass White Paper 2203.08039]

leptogenesis bounds from [Drewes/Georis/JK 2106.16226]

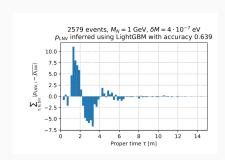
- \cdot for experimentally accessible heavy neutrino masses, all U^2 are allowed
- · both freeze-in and freeze-out leptogeneses already testable at existing experiments
- the maximal value of U^2 depends on m_1

From discovery to tests


Measuring the mass splitting in model with 2 HNLs

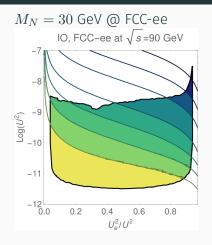
[Antusch/Cazzato/Drewes/Fischer/Garbrecht/Gueter/JK

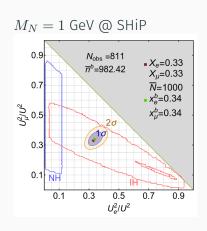
- large range of ΔM consistent with leptogenesis
- energy resolution of planned experiments $\Delta M/M \sim \mathcal{O}(\text{few\%})$
- Higgs vev contribution to RHN mass difference $\Delta M_{\theta\theta}$ practically implies lower limit on the mass splitting


Measuring the mass splitting in model with 2 HNLs

[Antusch/Hajer/Rosskopp 2210.10738]

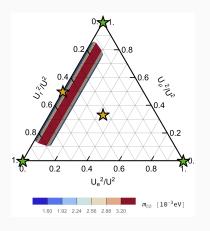
- large range of ΔM consistent with leptogenesis
- energy resolution of planned experiments $\Delta M/M \sim \mathcal{O}(\text{few\%})$
- Higgs vev contribution to RHN mass difference $\Delta M_{\theta\theta} \ {\rm practically\ implies}$ lower limit on the mass splitting


Measuring the mass splitting in model with 2 HNLs

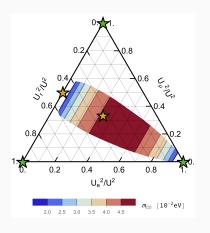

[Tastet/Timiryasov 1912.05520]

- large range of ΔM consistent with leptogenesis
- energy resolution of planned experiments $\Delta M/M \sim \mathcal{O}(\text{few\%})$
- Higgs vev contribution to RHN mass difference $\Delta M_{\theta\theta}$ practically implies lower limit on the mass splitting

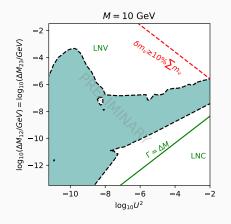
Measuring flavor ratios at experiments



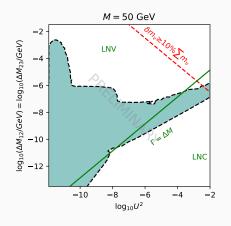
[Antusch/Cazzato/Drewes/Fischer/Garbrecht/Gueter/JK 1710.03744]

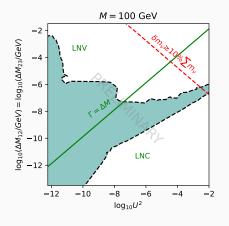

[Snowmass HNL WP 2203.08039]

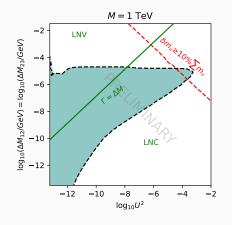
Complementarity with neutrinoless double beta decay



- m_{etaeta} is a complementary probe of the flavor mixing ratios for $M_N\gg 100MeV$
- "NH" benchmark minimizes m_{etaeta} for normal hierarchy
- "IH" benchmark close to maximal $m_{\beta\beta}$ for inverted hierarchy


Complementarity with neutrinoless double beta decay


- m_{etaeta} is a complementary probe of the flavor mixing ratios for $M_N\gg 100MeV$
- "NH" benchmark minimizes m_{etaeta} for normal hierarchy
- "IH" benchmark close to maximal $m_{\beta\beta}$ for inverted hierarchy


- benchmark with fixed $U_{\alpha I}^2/U^2$
- upper bound on U^2 arises through a combination of baryogenesis + fine tuning constraints
- leptogenesis consistent with both LNV and LNC RHN decays
- nontrivial LNV/LNC ratios can further constrain the RHN parameters

- benchmark with fixed $U_{\alpha I}^2/U^2$
- upper bound on U² arises through a combination of baryogenesis + fine tuning constraints
- leptogenesis consistent with both LNV and LNC RHN decays
- nontrivial LNV/LNC ratios can further constrain the RHN parameters

- benchmark with fixed $U_{\alpha I}^2/U^2$
- upper bound on U² arises through a combination of baryogenesis + fine tuning constraints
- leptogenesis consistent with both LNV and LNC RHN decays
- nontrivial LNV/LNC ratios can further constrain the RHN parameters

- benchmark with fixed $U_{\alpha I}^2/U^2$
- upper bound on U^2 arises through a combination of baryogenesis + fine tuning constraints
- leptogenesis consistent with both LNV and LNC RHN decays
- nontrivial LNV/LNC ratios can further constrain the RHN parameters

Conclusions

- · experimental sensitivities differ depending on flavor ratios
- tools for reinterpretation are highly desirable
- proposed new benchmarks for HNL searches
- \cdot when accesible LNV is an important observable $R_{\ell\ell}$
- leptogenesis is a viable baryogenesis mechanism for all heavy neutrino masses above the $\mathcal{O}(100)$ MeV scale
- leptogenesis is within reach at planned future experiments
 - · synergy between high-energy and high-intensity frontiers!
 - together they can cover a large portion of the low-scale leptogenesis parameter space

Large mixing angles and approximate B-L symmetry

- large U^2 require cancellations between different entries of the Yukawa matrices F
- this cancellation can be associated with an approximate lepton number symmetry

[Shaposhnikov hep-ph/0605047, Kersten Smirnov 0705.3221, Moffat Pascoli Weiland 1712.07611]

• symmetry broken by small parameters $\epsilon,\epsilon',\mu,\mu'$

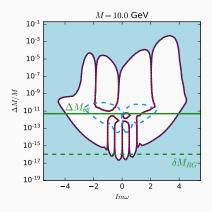
Pseudo-Dirac pairs

$$N_s = \frac{N_1 + iN_2}{\sqrt{2}}$$
, $N_w = \frac{N_1 - iN_2}{\sqrt{2}}$

B-L parametrisation

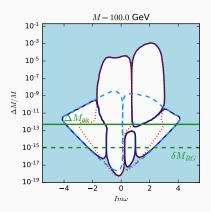
$$M_M = \bar{M} \begin{pmatrix} 1 - \mu & 0 & 0 \\ 0 & 1 + \mu & 0 \\ 0 & 0 & \mu' \end{pmatrix}$$

$$F = \frac{1}{\sqrt{2}} \begin{pmatrix} F_e(1+\epsilon_e) & iF_e(1-\epsilon_e) & F_e\epsilon'_e \\ F_\mu(1+\epsilon_\mu) & iF_\mu(1-\epsilon_\mu) & F_\mu\epsilon'_\mu \\ F_\tau(1+\epsilon_\tau) & iF_\tau(1-\epsilon_\tau) & F_\tau\epsilon'_\tau \end{pmatrix}$$

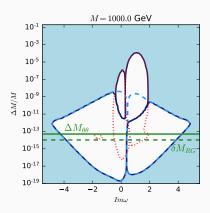

Fine tuning

- if present, symmetries are manifest to all orders in p.t.
- in the case of a large B-L breaking, radiative corrections can cause large neutrino masses
- we can use the size of radiative corrections to the light neutrino masses to quantify tuning

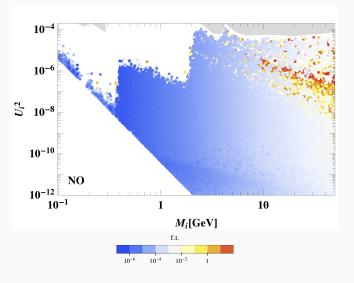
Fine Tuning


$$f.t.(m_{\nu}) = \sqrt{\sum_{i=1}^{3} \left(\frac{m_{i}^{\text{loop}} - m_{i}^{\text{tree}}}{m_{i}^{\text{loop}}}\right)^{2}}$$

Slices of the parameter space


- two characteritic mass splittings
- · mass splitting induced by the Higgs $\Delta M_{ heta heta}$
- \cdot mass splitting induced by RG running δM_{RG}

Slices of the parameter space

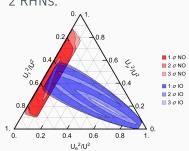

- two characteritic mass splittings
- · mass splitting induced by the Higgs $\Delta M_{ heta heta}$
- \cdot mass splitting induced by RG running δM_{RG}

Slices of the parameter space

- two characteritic mass splittings
- · mass splitting induced by the Higgs $\Delta M_{ heta heta}$
- mass splitting induced by RG running δM_{RG}

Results: Leptogenesis with 3 RHN (Normal Ordering)

[Abada/Arcadi/Domcke/Drewes/JK/Lucente 1810.12463]


Hierarchy in the washout

- lepton asymmetry can survive washout if hidden in a particular flavor
- washout suppression

$$\mathfrak{f} \equiv \frac{\Gamma_a}{\Gamma} \sim \frac{U_a^2}{U^2}$$

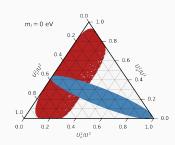
- for 2 RHN $\mathfrak{f} > 5 \times 10^{-3}$
- for 3 RHN $\mathfrak{f} \ll 1$ possible

2 RHNs:

[Snowmass White Paper 2203.08039]

[Drewes/Garbrecht/Gueter/JK 1609.09069]

[Caputo/Hernandez/Lopez-Pavon/Salvado 1704.08721]


Hierarchy in the washout

- lepton asymmetry can survive washout if hidden in a particular flavor
- washout suppression

$$\mathfrak{f} \equiv \frac{\Gamma_a}{\Gamma} \sim \frac{U_a^2}{U^2}$$

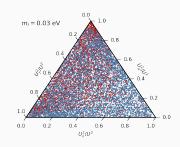
- \cdot for 2 RHN $\mathfrak{f} > 5 \times 10^{-3}$
- · for 3 RHN $\mathfrak{f}\ll 1$ possible

3 RHNs:

[Drewes/Georis/JK 220x.xxxx]

[Chrzaszcz/Drewes/Gonzalo/Harz/Krishna-

murthy/Weniger 1908.02302]

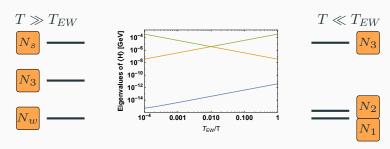

Hierarchy in the washout

- lepton asymmetry can survive washout if hidden in a particular flavor
- washout suppression

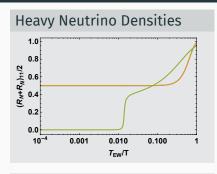
$$\mathfrak{f} \equiv \frac{\Gamma_a}{\Gamma} \sim \frac{U_a^2}{U^2}$$

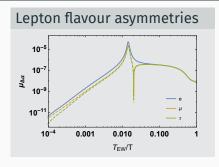
- for 2 RHN $\mathfrak{f} > 5 \times 10^{-3}$
- · for 3 RHN $\mathfrak{f}\ll 1$ possible

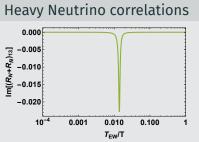
3 RHNs:

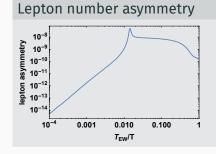

[Drewes/Georis/JK 220x.xxxx]

[Chrzaszcz/Drewes/Gonzalo/Harz/Krishna-

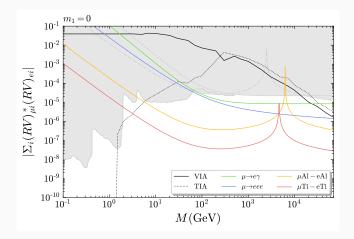

murthy/Weniger 1908.02302]

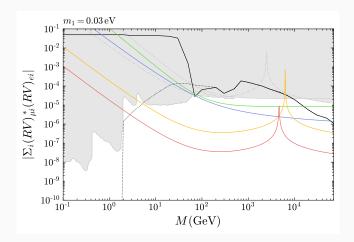

Enhancement due to level crossing


- in the B-L symmetric limit two heavy neutrinos form a pseudo-Dirac pair
- the "3rd" heavy neutrino can be heavier than the pseudo-Dirac pair
- for $T\gg T_{EW}$, the pseudo-Dirac pair also has a thermal mass



Enhancement due to level crossing




Indirect probes: Charged LFV

[Granelli/JK/Petcov 2206.04342]

- · parameters space in the TeV region already severly constrained by cLFV observables
- \cdot future $\mu
 ightarrow e$ conversion experiments can probe a large part of the N=3 parameter space

Indirect probes: Charged LFV

[Granelli/JK/Petcov 2206.04342]

- · parameters space in the TeV region already severly constrained by cLFV observables
- \cdot future $\mu
 ightarrow e$ conversion experiments can probe a large part of the N=3 parameter space