

By Sophie Charlotte Middleton

(smidd@caltech.edu)

on behalf of the BABAR Collaboration

October 2022

The Standard Model

Although successful in explaining many things, sometimes with very high precision, there is need to extend the standard model

Neutrino masses

Baryonic Asymmetry in the universe

Astrophysical observations

→ existence of Dark Matter and Dark Energy

Dark Matter: The Neutrino Portal

Plethora of models to explain DM

Search for new physics by incorporating new terms into Lagrangian

Dark photons

Dark Higgs

This talk focused on the "Neutrino portal"

Dark Matter: The Neutrino Portal

Plethora of models to explain DM

Search for new physics by incorporating new terms into Lagrangian

This talk focused on the "Neutrino portal"

Neutrino Oscillations

$$\begin{pmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

- Neutrino oscillations are only experimentally verified physics beyond the SM → neutrinos have mass!
- Mixing parameterized using the PMNS matrix.
- Measurements of neutrino compositions at accelerators, reactors and underground facilities have provided measurements of the three Euler angles parametrizing the PMNS matrix and Δm_{21}^2 and Δm_{32}^2

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} P$$

- But many unanswered questions in neutrino physics, including:
 - CP Violation?
 - Nature of neutrinos?
 - Why is mixing so different from CKM?
 - Why is neutrino mass so small? What are the origins of this mass? An appealing possible explanation for this is a seesaw model propose additional heavy neutral leptons.

Heavy Neutral Leptons?

- Heavy Neutral Leptons (HNLs) are additional neutrino states. Have mass, but no weak hyper-charge, electric charge, weak isospin and color charge. Could be produced in experiments only via mixing with active neutrinos.
- HNLs are proposed by several beyond Standard Model (BSM) theories to explain three major observational phenomena:
 - Neutrino oscillations and origins of their mass via seesaw models etc. (Phys. Rev. D 23,165);
 - Baryonic asymmetry of Universe (Phys. Rev. Lett. 81, 1359);
 - Dark matter candidate (Phys. Lett.B 631, 151–156).
- If neutrinos get their mass from Higgs, Yukawa couplings must be exceedingly small. Not so in seesaw models with 5-dim operator and additional Majorana neutrinos.
- Lighter sterile (eV-scale) neutrinos can also help explain various experimental observations:
 - "Reactor Anti-neutrino anomaly:" (Phys. Rev. D 83, 07300).
 - "Gallium anomaly:" (Phys. Rev. C 80 015807).
 - "Accelerator anomaly:" LSND (Phys. Rev. D 64, 112007) MiniBooNE (Phys. Rev. Lett. 110, 161801)
- This is why its important to explore additional neutrinos.

Possible Mass Scale

Depending on the model, wide range of models proposing HNLs across mass ranges:

- 1. $m_4 \sim 0$ (eV/c²): solve so-called "oscillation anomalies".
- 2. $m_4 \sim 0$ (keV/c²): warm dark matter candidate.
- 3. $m_4 \sim 0$ (MeV/c² GeV/c²): deviations in SM decays.
- 4. $m_4 \sim 0$ (GeV/c² TeV/c²): can explain Baryonic Asymmetry via low-scale scenarios of leptogenesis without conflict with other cosmological observations.

e.g. v-MSM model introduces three right-handed singlet HNLs:

- Two GeV/c² scale particles solve origin and smallness of SM neutrino mass with see saw mech.
- Third HNL is dark matter candidate with mass ~keV/c². Also provides lepto-genesis due to Majorana mass term
- (Phys. Rev. Lett. 81, 1359)
- v-MSM fits with all current experimental constraints.
- Different methods/techniques needed to test such a variety of models
- HNLs in MeV-GeV scale can be searched for at existing accelerator-based experiments.

Extended PMNS and Current limits

Bounded from below by the BBN constraint (JCAP 1210 (2012) 014, [1202.2841) and the see-saw limit (JCAP1009 (2010) 001, [1006.0133])

$$\begin{pmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \\ \nu_{s} \\ \vdots \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} & \dots \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} & \dots \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} & \dots \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} & \dots \\ \vdots & \vdots & \vdots & \ddots & \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \\ \nu_4 \\ \vdots \end{pmatrix}.$$

Beacham et al., Journal of Physics Cic. and Part.1075 Phys. 47, 010501

- Experiments try to measure the matrix elements $|U_{ln}|^2$ where $l=e,\mu,\tau$ and $n=4,5,6\dots$
- Experiments generally quote results in parameter space of elements $|U_{ln}|^2$.v. HNL mass hypothesis.
- Tau sector historically less explored...

The BABAR Search

 $\sigma(e^+e^- \to \tau^+\tau^-) = 0.919 \pm 0.003$ nb Integrated luminosity in runs used = 424 fb ⁻¹ \to N_{TT} = 4.6 × 10⁸ events

- For overview of experiment: Nucl. Instrum. Meth. A 729, 615 (2013).
- New analysis from **BABAR** using the kinematics of hadronic tau decays based on ALEPH technique (Eur. Phys. J.1137C 2, 395).
- Looks only at kinematics, no assumptions on underlying model, except that there must be some small mixing with tau sector.:
 - "signal side": three pronged pionic tau decay $(\tau^- \to \pi^- \pi^- \pi^+ v_\tau)$ as it allows access to region $100 < m_4 < 1360$ MeV/c² where current limits are loose.
 - "tag side": Second tau decay must be leptonic, due to cleaner environment.

Method

Templates for each mass in the form of 2D plots of E_h.v. m_h. Boundary of curved region in this plot due to massive neutrino if present.

- Model 3-pronged decay as 2-body with outgoing HNL and hadronic system
- Define E_h as energy and m_h as the invariant mass of the hadronic products.
- $E_{\tau} = \frac{E_{cms}}{2}$ in the limit of no ISR. The value of m_h can exist, in principle, in the range:

$$3m_{\pi^{\pm}} < m_h < m_{\tau} - m_4$$

$$E_{\tau} - \sqrt{m_4^2 + q_+^2} < E_h < E_{\tau} - \sqrt{m_4^2 + q_-^2},$$

$$q_{\pm} = \frac{m_{\tau}}{2} \left(\frac{m_h^2 - m_{\tau}^2 - m_4^2}{m_{\tau}^2} \right) \sqrt{\frac{E_{\tau}^2}{m_{\tau}^2} - 1} \pm \frac{E_{\tau}}{2} \sqrt{ \left(1 - \frac{(m_h + m_4)^2}{m_{\tau}^2} \right) \left(1 - \frac{(m_h - m_4)^2}{m_{\tau}^2} \right)};$$

SM Tau Decay

$$\frac{d\Gamma_{\rm tot}(\tau^- \to \nu h^-)}{dm_h dE_h} = \left(1 - |U_{\tau 4}|^2\right) \frac{d\Gamma(\tau^- \to \nu h^-)}{dm_h dE_h} \Big|_{m_\nu = 0} + |U_{\tau 4}|^2 \frac{d\Gamma(\tau^- \to \nu h^-)}{dm_h dE_h} \Big|_{m_\nu = 0}$$

BSM Tau Decay

Caltech

Background and Signal Simulations

TAUOLA: Comp. Phys. Co. 130, 260–325 (2000) <u>KK2F: Comp. Phys. Co. 64, 275 (1991)</u>

EvetGen: Nucl. Instrum. Meth. A 462, 152 (2001)

JetSet: Comp. Phys. Co. 39, 347 (1986)

- Use MC to estimate expected background contributions
- Detector response modelled using GEANT4, event generator specific to each source
- Three potential sources of non-signal events in data:
 - 1. SM 3 pronged decay to 3 charged pions $(\tau^- \to \pi^- \pi^- \pi^+ v_{\tau})$ (TAUOLA, KK2F)
 - 2. Other SM tau decays accidentally tagged as (1) (TAUOLA, KK2F)
 - 3. SM non-tau backgrounds:
 - $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B^+B^-$ and $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B^0\bar{B}^0$ (EvtGen)
 - $e^+e^- \rightarrow \bar{u}u$, $\bar{d}d$, $\bar{s}s$ and $e^+e^- \rightarrow \bar{c}c$ (JetSet)
 - $e^+e^- \to \mu^+\mu^-(\gamma) (KK2F)$
- HNL: characterized by large missing mass (TAUOLA+KK2F custom function, mass modified to attribute masses in range 100 1300 MeV/c²)

Example Signal Simulations

- Plots illustrate in 1D projections and final 2D templates for $\tau^- \to \pi^- \pi^- \pi^+ v_X$
- Show parameter space changes with HNL mass

largest sensitivity for large masses

Fit Model

Assume each bin (i, j) in 2D plots can be represented by a Poisson sampling function:

$$\mathcal{L} = \prod_{ij} f(n_{ij}; n_{\text{obs}}, \vec{\theta}) = \prod_{ij} \underbrace{\nu_{\text{HNL}} + \nu_{\tau-\text{SM}}}_{ij} + \underbrace{\nu_{\text{BKG}})_{ij}^{(n_{\text{obs}})_{ij}} e^{-(\nu_{\text{HNL}} + \nu_{\text{BKG}} + \nu_{\tau-\text{SM}})_{ij}}}_{(n_{\text{obs}})_{ij}!} \times \prod_{k} f(\theta_k, \tilde{\theta}_k),$$

Where:

Nuisance parameters

Potential signal events:

$$\hat{\nu}_{\text{HNL},ij} = n_{\text{HNL},ij}^{\text{reco}} = N_{\tau,\text{gen}} \cdot (|U_{\tau 4}|^2) \cdot p_{\text{HNL},ij},$$

Expected tau SM background events:

$$\hat{\nu}_{\tau-SM,ij} = n_{\tau-SM,ij}^{\text{reco}} = N_{\tau,\text{gen}} \cdot (1 - |U_{\tau 4}|^2) \cdot p_{\tau-SM,ij},$$

Expected non-tau SM background events:

$$\hat{\nu}_{\mathrm{BKG},ij} = n_{BKG,ij}^{\mathrm{reco}} = n_{\tau-\mathrm{other},ij}^{\mathrm{reco}} + n_{\mathrm{non}-\tau,ij}^{\mathrm{reco}},$$

Use Wilk's theorem to find limits:

$$q = -2\ln\left(\frac{\mathcal{L}_{H_0}(|U_{\tau 4}|_0^2; \hat{\theta}_0, \text{data})}{\mathcal{L}_{H_1}(|\hat{U}_{\tau 4}|^2; \hat{\theta}, \text{data})}\right) = -2\ln(\Delta \mathcal{L}).$$

Event Selection

• Selection optimized $au^\pm o l^\pm v_l$ (tag) and $au^\mp o \pi^\mp \pi^\mp \pi^\pm v_{HNL?}$ (3h)

Cut	Purpose
Number of tracks	Ensure 1+3 prong topology
Total charge on all 4 charged tracks is 0	Charge conservation
$p_{\it CM}^{\it miss} > 0.9\% \sqrt{s}$	Suppresses non-tau backgrounds
All tracks: $p_{trans} > 250 \mathrm{MeV/c}$	To reach DIRC ¹
All tracks: $-0.76 < \cos(\theta) < 0.9$	Acceptance of DIRC ¹
1 prong: $\frac{2p}{E} < 0.9\%$	Consistent with tau decay
PID Requirements	Uses Electron and Muon ID algorithms

Example 2D Plots

Plots for Sig = Neg. 3 prong Tag = Pos. electron

arXiv:2207.09575

Data Total = 1273291, MC Total = 1283654

Normalization Uncertainties

- Normalization uncertainties affect all bins uniformly.
- Have small effect on overall yield.
- They will be characterized as Gaussian nuisance parameters in the likelihood.

Uncertainty	Contribution	
Luminosity	0.44 % [BaBar]	
Cross-section	0.31% [Data]	
Branching fraction of 1-prong tau decays	Electron : 0.23 % [PDG] Muon: 0.23% [PDG]	
Branching fraction of 3-prong tau decays	3 pions : 0.57 % [PDG]	
PID Efficiency	Electron: 2 % [BaBar] Muons: 1 % Pions: 3 %	
q ar q and Bhabha Contamination	0.3 % [Control region analysis]	
Bin Size	< 1% [Alter bins, check results]	
Tracking Efficiency	N/A	
Detector Modelling	N/A	
Tau Mass uncertainty	N/A	
Tau Energy	N/A	

Systematic Shape Uncertainties

- Dominant shape systematic from modelling of the hadronic tau decays in TAUOLA
- $\tau^- \to \pi^- \pi^- \pi^+ v_{\tau}$ is mediated by the a₁ resonance 97% of the time.
- $m_{a_1}=$ 1230 \pm 40 MeV/c² and $\Gamma_{a_1}=$ 420 \pm 35 MeV/c² (PDG estimates 250 600 MeV/c²)

arXiv:2207.09575

Caltech

Result

- Binned profile likelihood approach used to find 95% C.L. on $|U_{\tau 4}|^2$.
- Considers both lepton tags and + and signal tau channels.
- Provides upper limits for HNLs mixing with taus in range $100 < |U_{\tau 4}|^2 < 1300 \text{ MeV/c}^2$

Mass $[MeV/c^2]$	No Sys.	With Sys.
100		2.31×10^{-2}
200	1.33×10^{-2}	1.95×10^{-2}
300	6.91×10^{-3}	9.67×10^{-3}
400	1.57×10^{-3}	2.14×10^{-3}
500	4.65×10^{-4}	5.85×10^{-4}
600	5.06×10^{-4}	6.22×10^{-4}
700	3.82×10^{-4}	4.85×10^{-4}
800	3.12×10^{-4}	3.85×10^{-4}
900	4.70×10^{-5}	5.38×10^{-5}
1000	8.34×10^{-5}	9.11×10^{-5}
1100	4.49×10^{-5}	4.78×10^{-5}
1200	4.70×10^{-6}	5.04×10^{-6}
1300	3.85×10^{-5}	4.09×10^{-5}

Summary and Outlook

- HNLs offer ways of explaining several observational phenomena.
- The possible masses of the HNLs is model dependent and can range from eV/c² up to very heavy masses.
- In the last few years, several new results have been published including results from collider-based experiments and neutrino experiments.
- This talk has given details on the newest analysis from BABAR which presents new upper limits on $|U_{\tau 4}|^2$ at 95 % C.L. between 100 MeV/c² 1300 MeV/c² :
 - Competitive with projections for experiment results expected in coming decade.
 - New technique can be applied to data from other experiments e.g. Belle-II.
 - Accepted in to PhysRevD.

Useful Resources for Additional Reading

- J. Beacham et al., Journal of Physics G: Nuc. and Part. Phys. 47, 010501 (2019).
- A. M. Abdullahi et al., in 2022 Snowmass Summer Study (2022) arXiv:2203.08039 [hep-ph].
- R. N. Mohapatra and G. Senjanovic, Phys. Rev. D 23,165 (1981)
- M. Fukugita and T. Yanagida, Phys. Rev. Lett. 89 (2002).
- E. K. Akhmedov, V. A. Rubakov, and A. Y. Smirnov, Phys. Rev. Lett. 81, 1359–1362 (1998).
- E. J. Chun et al., Int. J. Mod. Phys. A 33, 1842005(2018).
- ▶ T. Asaka and M. Shaposhnikov, Phys. Lett. B 620, 17–26(2005).
- T. Asaka and M. Shaposhnikov, Phys. Lett. B 620, 17–26(2005).
- A. Boyarsky, O. Ruchayskiy, and M. Shaposhnikov, Annual Review of Nuclear and Particle Science 59, 191–214 (2009).

- Asaka, S. Blanchet, and M. Shaposhnikov, Phys. Lett. B 631, 151– 156 (2005).
- A. Palazzo, Mod. Phys. Lett. A 28, 1330004 (2013).
- J. N. Abdurashitov et al., Phys. Rev. C 80 (2009).
- G. Mention et al., Phys. Rev. D 83, 073006 (2011).
- A. Aguilar et al. (LSND Collaboration), Phys. Rev. D 64, 112007 (2001).
- A. A. Aguilar-Arevalo et al. (MiniBooNE Collaboration), Phys. Rev. Lett. 110, 161801 (2013).
- G. Bernardi et al., Phys. Lett. B 203, 332 (1988).
- J. Orloff, A. Rozanov, and C. Santoni, Phys. Lett. B 550,8–15 (2002).
- A. Vaitaitis et al. (NuTeV Collaboration), Phys. Rev.1117 Lett. 83, 4943 (1999).
- A. V. Artamonov et al. (E949 Collaboration), Phys. Rev.1119 D 91, 052001 (2015).
- M. Aoki et al. (PIENU Collaboration), Phys. Rev. D 84 052002 (2011).