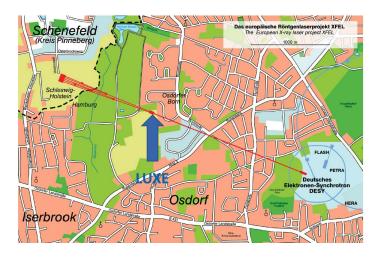
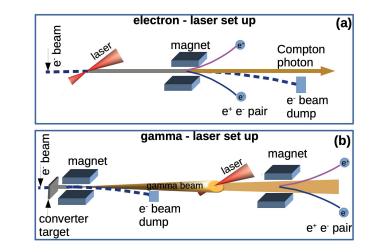


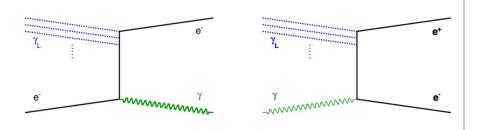
Search for FIPs with LUXE

Nicolò Trevisani, for the LUXE collaboration


KIT - Karlsruhe Institute of Technology

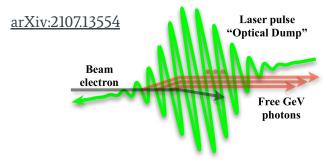

Workshop on Feebly-Interacting Particles 17-21 October 2022

The LUXE Project at DESY


LUXE: Laser Und XFEL Experiment

- XFEL provides a 16.5 GeV electron beam and bremsstrahlung photons
- The electrons (or photons) and the laser photons "collide" producing high-intensity interactions
- Currently a project, first data foreseen in 2026

The Physics at LUXE

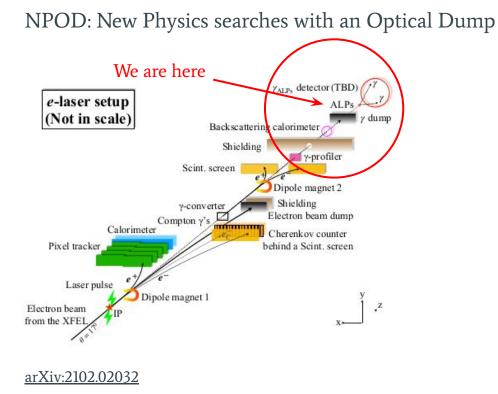

LUXE:

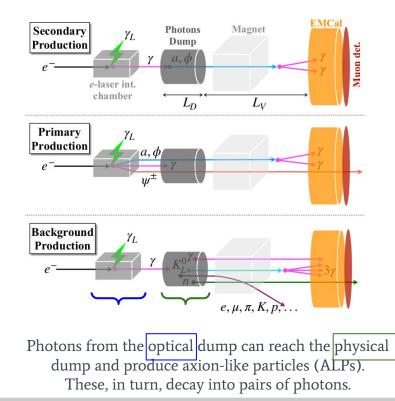
• Compare the predictions of full and perturbative QED in the Schwinger limit with the experimental results:

$$E_{
m c}=rac{m_{
m e}^2c^3}{q_{
m e}\hbar}\simeq 1.32 imes 10^{18}~{
m V/m}$$

• Measuring the e⁺e⁻ flux produced by electron-laser or photon-laser interactions

arXiv:2102.02032


LUXE-NPOD:


- Collide a beam of 16.5 GeV electrons with the laser
- With the correct choice of the <u>laser parameters</u>:
 The laser acts as a 'solid' dump for electrons, producing O(GeV) photons

- Photons see the laser as a transparent medium and can reach the physical dump

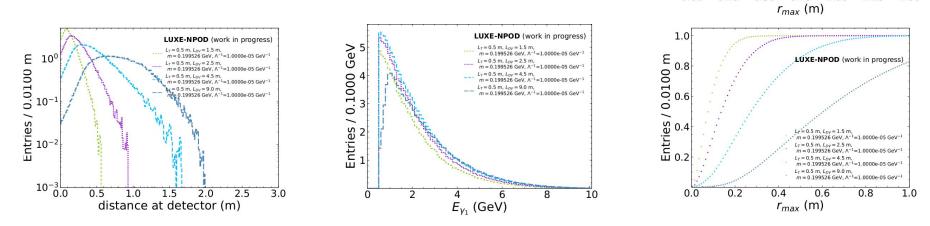
Overview the LUXE-NPOD Project

arXiv:2107.13554

Nicolò Trevisani - Search for FIPs with LUXE - FIP workshop 17-21/10/2022

Signal Definition and Production

ALP production can happen via the Primakoff mechanism:


$$\mathcal{L}_{a/\phi} = \boxed{\frac{a}{4\Lambda_{a/\phi}} F^{\mu\nu}}_{N} + \left(ig_{a/\phi e} a \bar{e} \gamma^5 e \right)$$

$$N_a \approx \mathcal{L}_{eff} \int dE_{\gamma} \frac{dN_{\gamma}}{dE_{\gamma}} \sigma_a \left(E_{\gamma} \right) \left(e^{-\frac{L_D}{L_a}} - e^{-\frac{L_V + L_D}{L_a}} \right) \mathcal{A}$$

$$\mathscr{L}_{eff} = N_e N_p \frac{9\rho_N X_0}{7A_N m_0}$$

Acceptance Studies

- Photons produce ALPs in the first mm of the dump
- Boosted $c\tau_{a/\phi}$ randomly drawn from exp(-L/L_{a/\phi}) distribution
- ALP decay after target and before detector
- E_ > 0.5 GeV
- No photon separation requirement yet
- Longer decay volumes require larger detector surface

Nicolò Trevisani - Search for FIPs with LUXE - FIP workshop 17-21/10/2022

LUXE-NPOD (work in progress)

 $L_T = 0.5 \text{ m}, L_{DV} = 2.5 \text{ m}, m = 0.199526 \text{ GeV}, \Lambda^{-1} = 1.0000\text{e-}05 \text{ GeV}^{-1}$

 $L_T = 0.5 \text{ m}, L_{DV} = 1.5 \text{ m},$ $m = 0.199526 \text{ GeV}, \Lambda^{-1} = 1.0000 \text{e} - 05 \text{ GeV}^{-1}$

 $L_T = 0.5 \text{ m}, L_{DV} = 4.5 \text{ m},$ m = 0.199526 GeV, A⁻¹=1.0000e-05 GeV $L_{pv} = 0.5 \text{ m}, L_{pv} = 9.0 \text{ m},$ 0.199526 GeV, A⁻¹=1.0000e-05 Ge

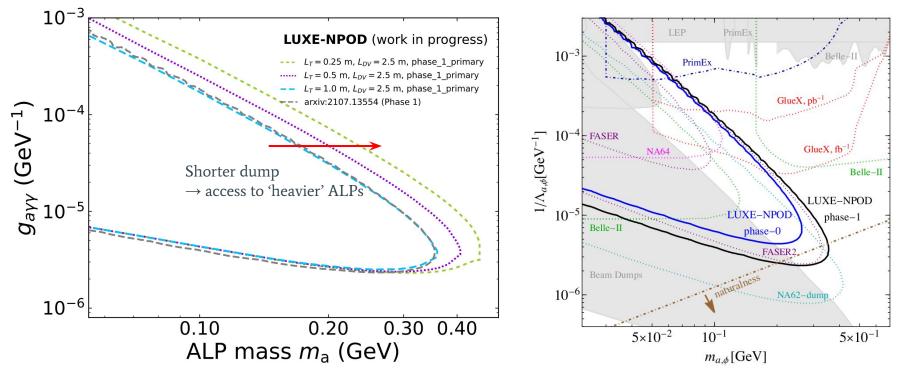
1.00

1.25

Entries / 0.0100 m

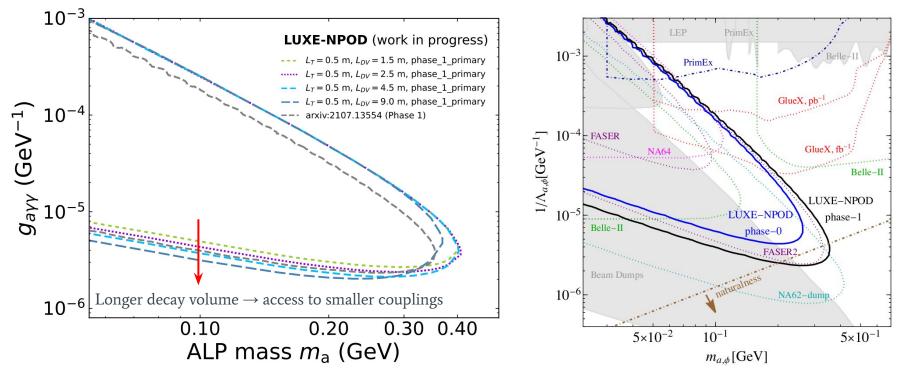
10-3 0.00

0.25


0.50

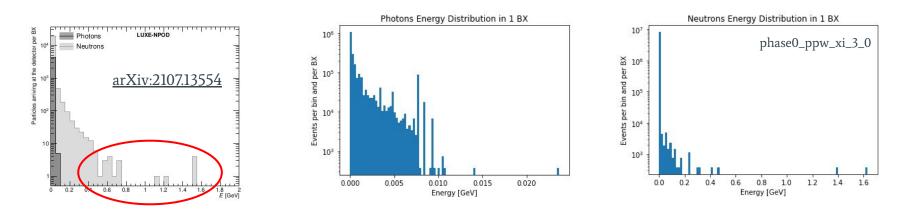
0.75

10⁰


Expected Results in Phase 1: Dump Length

arXiv:2107.13554

Expected Results in Phase 1: Decay-Volume Length

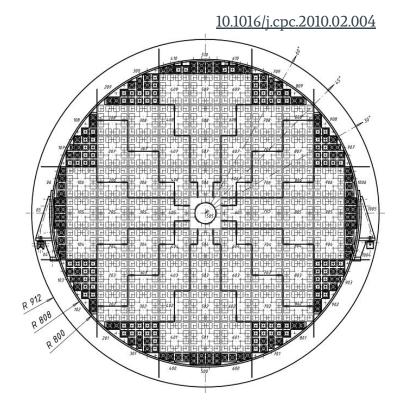

arXiv:2107.13554

Background Studies

The expected results are obtained assuming zero background:

- Studies in the LUXE-NPOD paper and more recent ones confirm it
- Photons really seem too soft to be a source of background. For neutrons in particular, statistics in $E_n > 0.5$ GeV is extremely low
- We use now **4 BX** but we may want to use more to populate the tail of the distributions

Nicolò Trevisani - Search for FIPs with LUXE - FIP workshop 17-21/10/2022

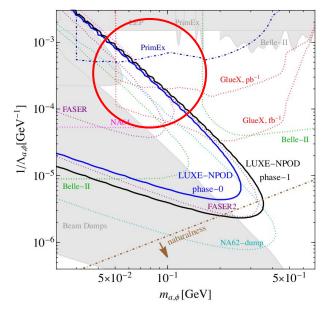

Detector Proposal

Detector physics goals:

- Signal efficiency
 → Photons shower separation (~ 2cm)
- Precise reconstruction of ALP invariant mass
 → Good resolution of photons direction and energy
- Background suppression
 - \rightarrow Vertex resolution (non-resonant photons)
 - \rightarrow Shower shape determination (neutrons)
 - \rightarrow Good time resolution (< 1ns) (neutrons)

Current proposals:

- H1 lead/scintillating-fiber calorimeter
- "Tracking calorimeter" (e.g., HGCal) followed by an existing crystal or SpaCal ECAL to get the full energy
- Cheap: new scintillator/absorber detector



Conclusions

The LUXE-NPOD project has the potential to inspect an unexplored ALPs phase space

- Sweet spot is light ALPs with large couplings
- Preliminary studies already presented in <u>arXiv:2107.13554</u> and <u>arXiv:2102.02032</u> need to be reviewed and expanded with more accurate simulations
 - Working on extended simulation to overcome lack of statistics in the relevant regions
- An experimental setup to achieve high signal efficiency and zero background is required
 - Optimization of experimental setup to maximize signal production and acceptance
 - Detector technology and analysis techniques to reject background

Plenty of work but also exciting challenges ahead!

BACK-UP

Expected Number of ALPs

$$N_a \approx \mathcal{L}_{\text{eff}} \int dE_{\gamma} \frac{dN_{\gamma}}{dE_{\gamma}} \sigma_a \left(E_{\gamma} \right) \left(e^{-\frac{L_D}{L_a}} - e^{-\frac{L_V + L_D}{L_a}} \right) \mathcal{A}$$

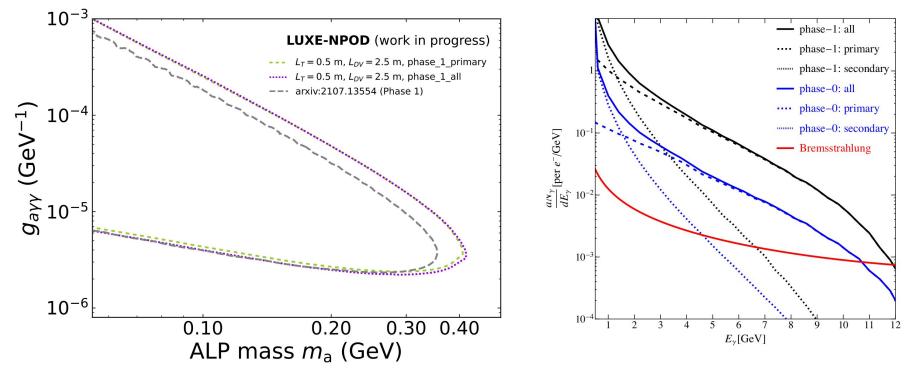
- $\mathscr{L}_{eff} = N_e N_p \frac{9\rho_N X_0}{7A_N m_0}$
 - + $N_e = 1.5 \times 10^9$ electrons/bunch
 - $N_p = 10^7$ laser pulses a year
 - + ρ_N density of dump, for tungsten 19.3 g/cm 3
 - X_0 is the radiation length of tungsten (0.35 cm)
 - A_N is the mass number of tungsten (184)
 - m_0 is the atomic mass unit in gram: 1.661×10^{-24} g.

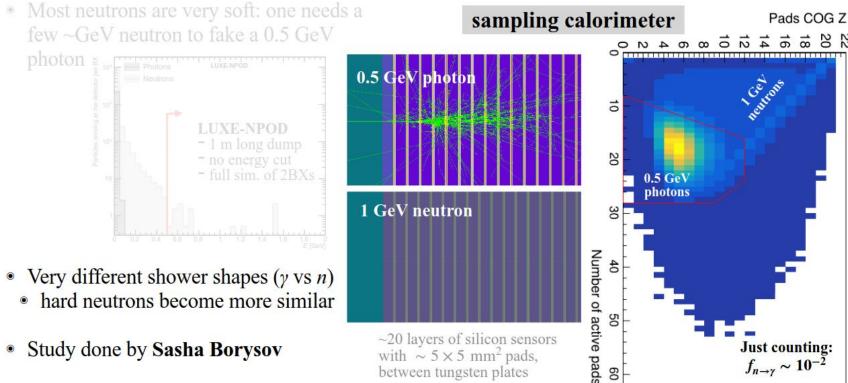
- $L_D = \underline{d}ump \text{ length (also } L_T = \underline{t}arget \text{ length})$
- L_V (also L_{DV}) = <u>d</u>ecay <u>v</u>olume length
- $L_a = c\tau_{a/\phi} p_{a/\phi} / m_{a/\phi} = ALP \text{ decay length}$
- σ_a(E_γ) = production cross-section as a function of E_γ
 O In our study, E_γ in bins of 0.1 GeV
- *A* = geometric acceptance of the detector

Laser Properties

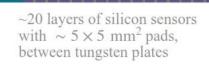
Process	Timescale		
Compton scattering: $e_V \rightarrow e_V + \gamma$	$\tau_{\gamma} = 1/\Gamma_{\gamma} \sim O(10)$ fs		
Breit-Wheeler pair production: $\gamma \rightarrow e^+_{V} + e^{V}$	$\tau_{ee} = 1/\Gamma_{ee} \sim O(10^4 - 10^6)$ fs		
Laser pulse duration at LUXE	t _L ~ <i>O</i> (10 - 200) fs		
Time scale of LUXE's 800 nm	$\sim 1/\omega_L \sim 0.4 \text{ fs}$		

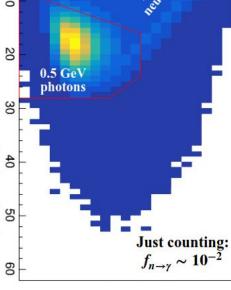
$$1/\omega_L << \tau_\gamma \lesssim t_L << \tau_{ee}$$


- Short τ_{γ} = plenty of time for electrons to produce photons \rightarrow electrons see the laser as a thick target
- Long τ_{ee} = long timescale for a photon to produce electron pairs \rightarrow photons see the laser as transparent


Expected Results in Phase 1: Primary vs All Photons

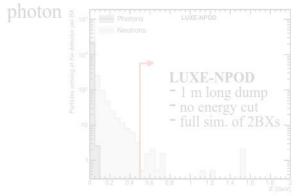
arXiv:2107.13554

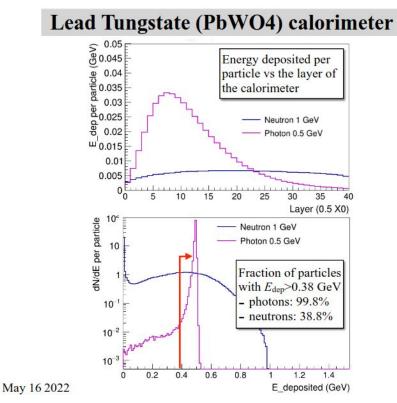

Torben Ferber



Fake photons from neutrons

- Very different shower shapes $(\gamma vs n)$ hard neutrons become more similar
- Study done by Sasha Borysov




35

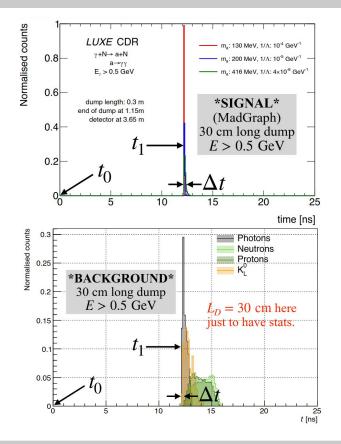
Fake photons from neutrons

 Most neutrons are very soft: one needs a few ~GeV neutron to fake a 0.5 GeV

- Very different shower shapes (γ vs n)
 hard neutrons become more similar
- Study done by Sasha Borysov

Noam Tal Hod, WIS

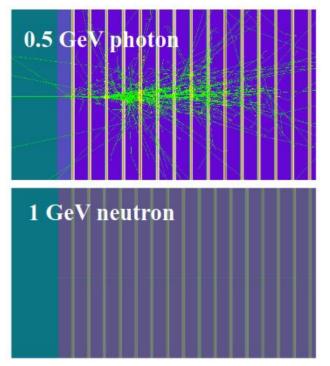
36


Background Rejection: Time of Arrival at the Detector

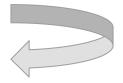
Particles have different velocities:

- Most signal (and bkg) photons arrive within $\Delta t \sim 0.5$ ns
- Almost all background hadrons arrive later
 - We need a time resolution of the order of

 $\sigma_t \sim 0.1 \text{ ns}$


		Background rejection [%]				Signal efficiency [%] for <i>m</i> a:1/Aa		
Δ <i>t</i> [n	s]	Y	n	р	KL	130:1e-4	200:e-5	416:e-5
0.5		~16	~96	~94	~52	~99.9	~99.8	~95
1.0		~0	~80	~70	~13	100	~99.9	100

Background Rejection: Shower Shape


Neutrons can deposit energy in the calorimeter material, mimicking the signature of a photon

- In a sampling calorimeter, though, we expect different shower development
- This property can be used to discriminate neutrons from photons
 - Possible to create a neutron veto

Photons Separations at Detector Surface

$m_X [{ m MeV}]$	$\Lambda_X [{ m GeV}^{-1}]$	$<20\mathrm{mm}~[\%]$	$< 40 \mathrm{mm} [\%]$	$< 50 \mathrm{mm} [\%]$
50	10^{-4}	13	30	38
100	10^{-5}	8.4	17	22
150	$6 imes 10^{-6}$	5.2	11	13
200	$4 imes 10^{-6}$	3.8	7.6	9.7

