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HNL crash course
• New spin-1/2 SM singlet(s) .


• Yukawas (  Dirac mass) + Majorana mass term: 


• Mixing between mass and flavour eigenstates:   .


• HNLs inherit weak interactions of neutrinos, suppressed by the mixing angle.


• 2+ HNLs may behave either as Dirac or Majorana fermions. 
They can even oscillate!  Jan’s talk [1709.03797, 1912.05520, 2012.05763, and more...]

N1,2,…

→ M =
0 vY†/ 2

vY*/ 2 MM

να ≅ UPMNS
αi νi +ΘαINI

→

Cf. this afternoon’s talks for a 

more complete introduction

 see backup→

2



HNL crash course
• New spin-1/2 SM singlet(s) .


• Yukawas (  Dirac mass) + Majorana mass term: 


• Mixing between mass and flavour eigenstates:   .


• HNLs inherit weak interactions of neutrinos, suppressed by the mixing angle.


• 2+ HNLs may behave either as Dirac or Majorana fermions. 
They can even oscillate!  Jan’s talk [1709.03797, 1912.05520, 2012.05763, and more...]

N1,2,…

→ M =
0 vY†/ 2

vY*/ 2 MM

να ≅ UPMNS
αi νi +ΘαINI

→

Cf. this afternoon’s talks for a 

more complete introduction

TL;DR: HNLs are heavy Dirac/Majorana neutrinos with suppressed interactions!
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• Realistic models contain multiple HNLs 
 

 large parameter space


• To manage this complexity, experiments 
report limits under some simplifying 
assumptions, e.g.: 
"one Majorana HNL mixing with  only" 
"one Majorana HNL mixing with  only" 
...


• This can lead to under-coverage of the 
true parameter space! 
(but also to limits which are too conservative, especially when combined)

⟶

νe
νμ

Reporting experimental limits on HNLs

All valid models

Limits for the

two simplified

benchmarks

Example: ATLAS [see 2107.12980 & 2110.11907]


• Limits reported for 1 Majorana HNL mixing with only 1 flavour.

• Recasted to more realistic scenarios in a separate study.

  The "simplified" limits don’t accurately constrain


more realistic models.
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• New benchmarks proposed for HNLs to ensure 
that the parameter is adequately covered. 
 

 
 
UPDATED!  Juraj’s talk tomorrow and [2207.02742]


• Those benchmarks are consistent with the 
observed neutrino data within a low-scale type-I 
see-saw model with 2 HNLs. 
(respectively for the normal (NH) and inverted (IH) hierarchy)

→

Previously in FIPs 2020

 onlyμ

 onlye

NEW!
NEW!

for both Dirac-like

& Majorana-like

[2102.12143]
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ATLAS delivered!
Search for heavy neutral leptons in decays of  bosons using a dilepton displaced vertex in  TeV  collisions with the ATLAS detectorW s = 13 pp

[ATLAS: 2204.11988  PRL when affiliations are sorted out...]→

Majorana-like HNLs Dirac-like HNLs

"1 Majorana HNL mixing with a single flavour"

is still there

Low variance between benchmarks  good coverage!→New FIPs 2020 benchmarks!
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Going beyond
Global parameter scans, Bayesian analyses, ...
• Sometimes it is necessary to precisely interpret the results for an arbitrary number of 

HNLs, choice of mixing angles , Dirac/Majorana nature... 
 
Example: [2101.09255] by Bondarenko, Boyarsky, Klaric, Mikulenko, Ruchayskiy, Syvolap, Timiryasov. 
They combine constraints from neutrino oscillation data, accelerator searches, big bang nucleosynthesis 
and the requirement of successful baryogenesis, and find a low-mass region that isn’t fully constrained yet: 
 
 
 
 
 
 
 

• Beyond HNLs: do we need to define benchmarks for all FIPs?

(Θe, Θμ, Θτ)

Here
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3 required ingredients for an easy reinterpretation

• The observed counts  in each signal region and bin. ✔


• The expected signal, for arbitrary model parameters, in each signal region and 
bin, e.g.:  
This talk  We’ll use the scaling properties of the signal for that.


• The background model (unless the search is background-free).  
Either as 1) the full likelihood 2) a simplified likelihood or 3) the correlation 
matrix of the per-bin background counts. 
Cf. LHC Reinterpretation Forum guidelines [2003.07868]

nobs
b

sb(mN, Θe, Θμ, Θτ, #HNLs, {Dirac |Majorana})
→
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Scaling properties of the signal
• Prior work: sensitivity matrix of SHiP to HNLs [1811.00930]. 

See also [1807.10024] and more recently [2208.13882].
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See also [1807.10024] and more recently [2208.13882].

• Typical FIP always nearly on-shell due to its small width 
→ narrow-width approximation

• Cross-section for a given process: 
 

 

 

σprocess = σprod × Brdecay

∝ |Θprod |2 |Θdecay |2 /Γtotal

• The total width  is the sum of partial widths for 
processes mediated by ,  and  mixings: 
 

Γtotal
e μ τ

Γtotal(MN, Θe, Θμ, Θτ) = ∑
α=e,μ,τ
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Extrapolating the expected signal (for HNLs)
See [2107.12980, section 3.2]
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Extrapolating the expected signal (for HNLs)
• Summing over processes, we obtain the expected number of signal events in bin b: 

 
 

      

 
 

 = sum of the partial widths mediated by flavour , computed for a unit mixing angle . 
 
Signal matrix  function of "normalised" cross-sections and efficiencies .

sb(MN, τN, Θe, Θμ, Θτ) =
∑α,β |Θα |2 Σαβ

b (MN, τN) |Θβ |2

∑γ |Θγ |2 Γ̂γ(MN)
=

(Θ2)TΣb(MN, τN)Θ2

Θ2 ⋅ Γ(MN)

Γ̂α α Θρ = δρα

Σαβ
b (MN, τN) εP,b(MN, τN)

See [2107.12980, section 3.2]

 see backup→
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• Only non-trivial thing that we need from experiments 
= signal efficiencies  for each pair of process P and bin b. 
Split by process what experiments already have!

εP,b(MN, τN)

• Typically computed on a  grid. 
Interpolate efficiencies in  to compute  at the physical lifetime .

MN × τN
τN Σαβ

b (MN, τN) Γ−1
total(MN, Θe, Θμ, Θτ)

See [2107.12980, section 3.2]

 see backup→
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Efficiencies treated as a black box:

Works even for complicated efficiencies! 

(MVA, neural networks, etc...)
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Conclusion

• The new benchmarks adopted at FIPs 2020 for HNLs have been successfully 
used to ensure that the latest ATLAS search has good parameter space coverage.


• There exist valid use cases that require going beyond benchmarks. 
(+ selecting/standardising good benchmarks takes time)


• If experiments release 1) fine-grained efficiencies (per bin, per process) and 2) a 
reasonably accurate background model, then one can leverage the scaling 
properties common to many FIP signatures to interpret their results for arbitrary 
parameters within the model of interest.
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Conclusion

• The new benchmarks adopted at FIPs 2020 for HNLs have been successfully 
used to ensure that the latest ATLAS search has good parameter space coverage.


• There exist valid use cases that require going beyond benchmarks. 
(+ selecting/standardising good benchmarks takes time)


• If experiments release 1) fine-grained efficiencies (per bin, per process) and 2) a 
reasonably accurate background model, then one can leverage the scaling 
properties common to many FIP signatures to interpret their results for arbitrary 
parameters within the model of interest.

EoI: I want to propose writing a short paper (or chapter in the FIPs report) 
describing precisely and step by step what experiments need to report.
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Backup slides
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EoI

• The endorsement of new, non-minimal benchmark points in the FIPs 2020 Workshop Report 
gave them the legitimacy needed to be adopted by at least one major experiment 🎉


• Throughout the years, there have been a number of efforts by theorists to reinterpret and/or 
combine the results of direct searches for HNLs. 
Non-exhaustive list: 1112.3319, 1807.10024, 2101.09255, 2107.12980, 2208.13882, ...


• This talk has discussed a way to make this task far easier, more accurate, and applicable to 
some other FIPs. To use it in practice, we need experiments to report some additional data.


• Having a precise, step-by-step guide describing what exactly is needed and how to 
compute it would make it more likely that experiments will actually release such data.


• If you are interested in repeating the success of the FIPs 2020 workshop and collaborate 
with me on a whitepaper aimed at experiments, don’t hesitate to contact me!
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Generalising

• Let  be the (small) couplings involved in the SM  FIP interactions. 
(for complex couplings both  and  should be included)


• A diagram involving an on-shell FIP will generically separate into production, propagation and 
decay parts, contributing a factor  with small .


• After 1) summing diagrams 2) reordering the sum 3) squaring the amplitude and using the 
NWA 4) taking the experimental efficiencies into account and 5) integrating over phase space, 
then repeating steps (1,2,3,5) for the total width, we obtain for the expected signal in bin b: 
 

             (with implied Einstein summation)


• This expression may appear daunting at first, but it is actually usable in practice! 
(thanks to the sparsity and symmetry properties of the tensors  and , as we saw for HNLs)

ε1, …, εNε
↔

ε ε*

∝ εiprod
εidecay

/(p2
FIP − m2 + imΓtotal(m, {εi})) Γtotal

sb =
Σ(ij)(kl)

b (m, τ)ε*i ε*j εkεl

Γij(m)ε*i εj

Σ(ij)(kl)
b Γij
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Properties of ,  and simplificationsΣ Γ

• The tensors have symmetry properties and will often be sparse. 
 Only a restricted number of elements will need to be computed.


•  is hermitian. 
 is hermitian under  and symmetric under  and .


• If all couplings are real,  is symmetric and  completely symmetric.


• If all the diagrams contributing to a given process involve the same couplings, then 
 is diagonal and  diagonal in  and  (applies to HNLs!)


• For a dense , the efficiencies will need to be reported for interference terms too.

→

Γij

Σ(ij)(kl)
b (ij) ↔ (kl) i ↔ j k ↔ l

Γij Σ(ij)(kl)
b ≡ Σijkl

b

Γij Σ(ij)(kl)
b i, k j, l

Σ(ij)(kl)
b
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Note on the  dependence of τ Σ

•  depends of the lifetime  through the experimental signal efficiencies.


• For a promptly-decaying FIP,  doesn’t matter: .


• For a very long-lived FIP ( ), the efficiency goes as . 
In this case  and the  cancels the , 
leading to the " " scaling that is typical of long-lived particles: 
 
        

Σ(m, τ) τ

τ Σ(m, τ) ≡ Σ(m)

γτ ≫ Lexp ∝ τ−1

Σ(m, τ) ≅ Σ0(m) × (τ0/τ) 1/τ 1/Γtotal
ε4

sb = τ × Σ(ij)(kl)
b (m, τ)ε*i ε*j εkεl ≅ (τ0Σ(ij)(kl)

0,b (m)) ε*i ε*j εkεl
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Coherent HNL oscillations
• If  is small enough  coherent oscillations of frequency . 

(in their rest frame of the HNL: the phase is  × proper time)  
[Antusch, Cazzato, Fischer: 1709.03797], [Beuthe: hep-ph/0109119], [Tastet: master thesis], [Antusch, Rosskopp: 2012.05763]


• Three regimes of interest, depending on how  compares with the proper time 
scale  probed by the experiment.

δM = M2 − M1 → δM/2π
δM

δM−1

Γ−1 = min(Γ−1
N , Lexp/γ)

: Dirac-likeδM ≪ Γ : Majorana-likeδM ≫ Γ: resolvable osc.δM ∼ πΓ

NEW TODAY! [Antusch, Hajer, Rosskopp: 2210.10738]
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Reinterpretation of the prompt ATLAS search
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ATLAS prompt search: cutflow

No OSSF
"Minimal" detector cuts

"Softest" available triggers
Avoid Z pole in e channel
Further cuts with almost


no effect on signal
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Signal efficiency validation
Cuts applied in order

Processes

Cumulative efficiencies

= efficiencies with the


k first cuts applied

Black line =

reported by ATLAS
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Extrapolating the expected signal
• The expected signal in bin b, as a function of model parameters, is: 

 

  

 
with the signal matrix   

where the sum runs over processes P mediated by flavours  at production and  at decay, and  
is the cross-section computed for unit mixing angles and assuming the (small) reference width , 
and with  the sum of the partial widths mediated by flavour , computed for a unit mixing angle.


• The efficiencies  are typically computed on a  grid. 
To compute  at the physical lifetime , the efficiencies should be 
interpolated in  between the nearest grid points.

sb(MN, τN, Θe, Θμ, Θτ) =
∑α,β |Θα |2 Σb,αβ(MN, τN) |Θβ |2

∑γ |Θγ |2 Γ̂γ(MN)

Σb,αβ(MN, τN) = Lint × ∑
P

εP,b(MN, τN) ×
cP

cΓ
× ̂σP(MN, τN) × Γref

α β ̂σP
Γref

Γ̂γ γ

εP(MN, τN) MN × τN
Σb,αβ(MN, τN) Γ−1

total(MN, Θe, Θμ, Θτ)
τN
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Only non-trivial part that we 
need from experiments 

= signal efficiencies for each 
pair of process P and bin b

Multipliers for Dirac/Majorana
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Quasi-Dirac HNLs
(Note that "2 Dirac-like HNLs" = "1 Dirac HNL" up to a rescaling of  by )Θ 2

• If HNLs are quasi-Dirac, it is enough to compute the cross-sections and width 
for one Majorana HNL, as long as we correct the cross-sections and total 
width with the following multiplicative factors: 
 

 

 

sb = Lint × ∑
P

εP,b(MN, τN) × cP × σP(MN, Θe, Θμ, Θτ)

Γtotal(MN, Θe, Θμ, Θτ) = cΓ |Θα |2 Γ̂α(MN)
21



Interpolation of efficiencies
Example from the reinterpretation of the prompt search

≤(øN) = ≤0

1+
øN
ø0

Constant for small τN

 for large ∝
1
τN

τN

P

b

εP,b(MN, τN)

Ansätz:
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Reinterpretation of limits
How to read the results

[Tastet, Ruchayskiy, Timiryasov: 2107.12980]

Limits at 95% CL2σ ≈

Exc
lu

ded
!
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Reinterpretation of limits
Majorana-like HNLs

• Recast limits almost always weaker than 
single-flavour (up to 1 order of magnitude)


• Weakest limits  largest τ mixing 
Smaller BR in signal channels 
Many HNLs produced with taus  

 Search for τ’s to close the blind spots!


• Similar results for the inverted hierarchy

↔

→

[Tastet, Ruchayskiy, Timiryasov: 2107.12980]
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Reinterpretation of limits
Dirac-like HNLs

• Previously: no sensitivity for single-flavour


• Limits weaker by up to 3 orders of 
magnitude vs. original benchmarks 
(weakest limits when a mixing is suppressed)


• There exist allowed models 3 orders of 
magnitude above the reported limit


• Increased variance between benchmarks 
 weaker marginalised limit→

[Tastet, Ruchayskiy, Timiryasov: 2107.12980]
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