Flavor-Changing Light Bosons with Accidental Longevity

Kun-Feng Lyu School of Physics and Astronomy, University of Minnesota

In collaboration with Yohei Ema, Zhen Liu and Maxim Pospelov 2211.XXXX

Outline

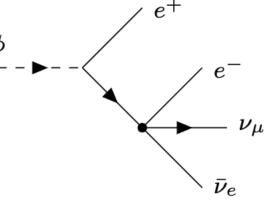
- Motivation
- Model
- Muon Magnetic Moment
- e-mu case
- mu-tau case

Motivation

- The latest muon g-2 measurement shows 3.7 sigma deviation from SM prediction.
- There have been many scenarios to explain.
- We propose a simple scalar flavor off-diagonally coupled to lepton. A new mass window is probed.
- In the mass window, it becomes accidentally long-lived and thus can be probed at the beamdump experiment.

Model

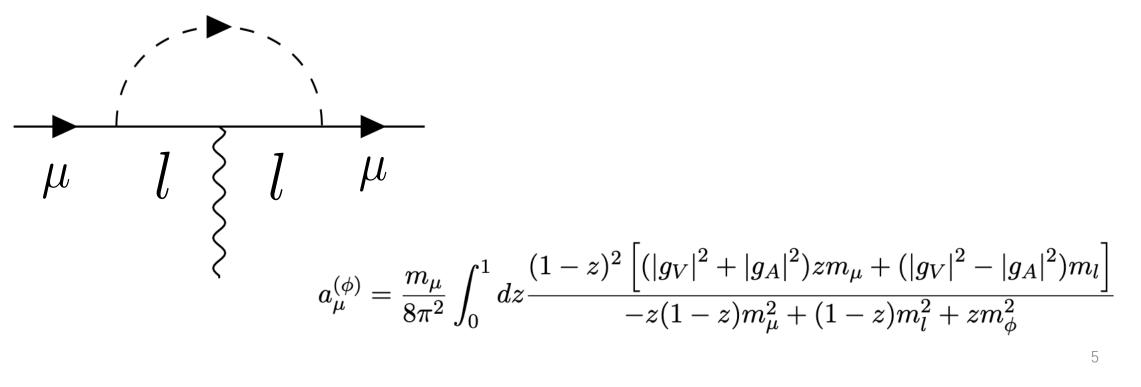
• Consider a complex scalar phi carrying +1 mu number and -1 *l* number $\int l^2 dt^2 = m^2 |t|^2 + \frac{1}{2} \int \bar{l} dt = l^2 dt^2$


$$\mathcal{L} = |\partial \phi|^2 - m_{\phi}^2 |\phi|^2 + \phi \,\bar{\mu} \left(g_V + g_A \gamma_5 \right) l + \phi^* \bar{l} \left(g_V^* - g_A^* \gamma_5 \right) \mu,$$

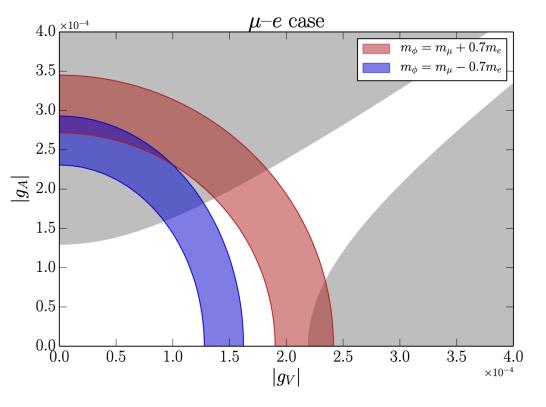
• In the mass range, it can become long-lived accidentally

$$|m_{\mu} - m_l| < m_{\phi} < m_{\mu} + m_l$$

 $m_\phi < m_\mu + m_l$ phi can not decay to mu + l


 $|m_{\mu} - m_l| < m_{\phi}$ Avoid lepton decay branching ratio.

Muon Magnetic Moment


The latest measurement

$$\Delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{SM} = (251 \pm 59) \times 10^{-11}$$
 2104.03281

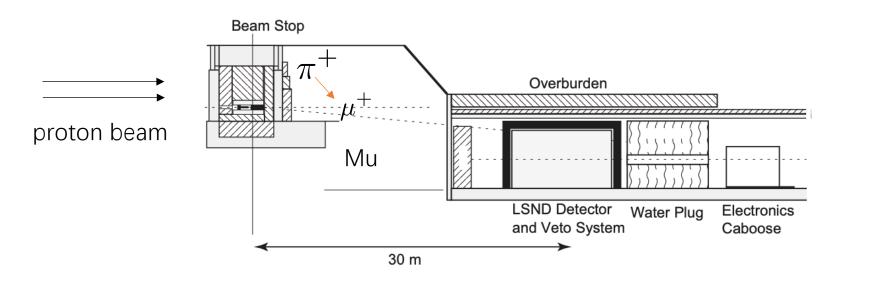
e-mu case

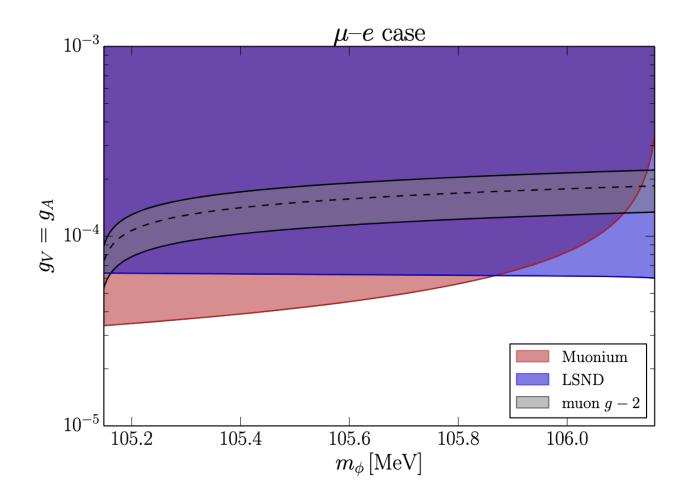
Muon g-2 constraint

- Shaded: electron g-2 exclusion region
- At this region, the decay length is around 10^{10} km

Muonium

the quasi-bound state of mu and e, can decay to phi plus a photon.

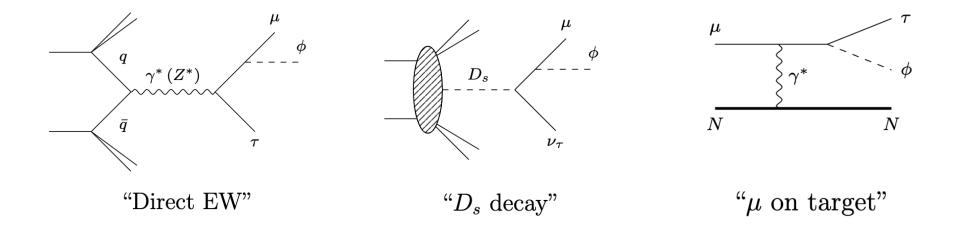

$$Br(Mu^{(S=1)} \to invisible) < 5.7 \times 10^{-6}$$

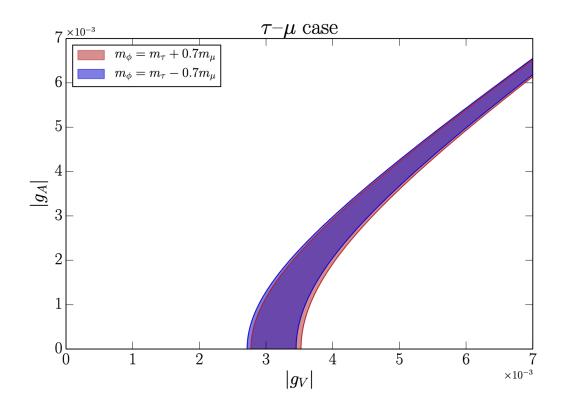

1209.0060

LSND Experiment

- We need intense muon source.
- Originally to measure mu-neutrino to e-neutrino oscillation.
- Mu+ can be produced by the meson pi+, it can form muonium when traveling through the water.
- muonium decay -> phi

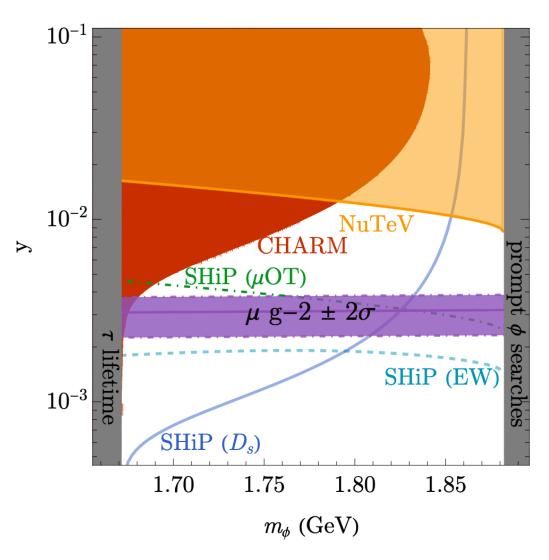
Phi decay in the LSND detector.




The parameter space that can explain muon g-2 is excluded by the LSND!

mu-tau case

- Phi is heavier than that in e-mu case.
- We can probe it in the higher energy beamdump experiments.
- There are mainly 3 channels for the production.



Experiment	$E_{\rm beam}({ m GeV})$	POT	<i>D</i> (m)	<i>L</i> (m)	$A~(m^2)$	$\epsilon^{ m geo}_{ m acpt}$	Major production
CHARM	400	$2 imes 10^{18}$	480	35	$3{\times}3$	1.3%	EW, D_s , μ OT
NuTeV	800	μOT	850	34	2.54 imes 2.54	$\mathcal{O}(1)\%$	$\mu \mathrm{OT}$
SHiP	400	2×10^{20}	60	60	$5{\times}10$	54%	EW, D_s , μ OT

The corresponding decay length is around 10 km.

Can be detected in the far detector.

- CHARM and NuTeV cannot exclude the parameter region that explains the muon g – 2 anomaly.
- While the future SHiP experiment covers the whole parameter space.

Conclusion

- We study the phenomenology of a complex scalar coupled to mu and either e or tau motivated by muon g-2.
- The scalar becomes long-lived in the mass window we considered.
- For e-mu case, phi can be produced by the muonium that is formed in LSND proton beamdump experiment. The excess events shows the the g-2 allowed region is excluded.
- For mu-tau case, phi can be produced by the Drell-Yan process, heavy meson decay and muon-target. The future SHiP can cover most parameter space.

Thank you!