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Building the 𝑒−/𝑒+ fixed target of the future ?
• Many proposals for a next-generation electron fixed target/beam dump 

machines  
→For the long-lived limit, we want to do better 

than experiments from the 80s-90s … Limits from DarkCast



Building the 𝑒−/𝑒+ fixed target of the future ?

• Many experimental strategies pursued 
closing the (in)-famous Mont’s gap
→ Higher boost factor (FPF, SHIP, etc…)

→ Smaller beam dump size (NA64) /  Displaced 
vertices  (LHCb)

→ More statistics for bump-search method (Belle-II)

Limits from DarkCast

This talk → use a different production 
mechanism

• Many proposals for a next-generation electron fixed target/beam dump 
machines  
→For the long-lived limit, we want to do better 

than experiments from the 80s-90s …

… and many others !



Going resonant …

Bremsstrahlung 
process

→Cross-section scales 
as Z2

→FIP carries away 
most of the beam 
energy: sensitivity 
up to
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Going resonant …

Resonant process

→ Cross-section x100 
times larger

→Scales as Z only

Bremsstrahlung 
process

→Cross-section scales 
as Z2

→FIP carries away 
most of the beam 
energy: sensitivity 
up to
𝑚𝑉 ∼ Ee+

• What are the trade-offs for resonant production ?
→ First, we need to find positrons somewhere. Typically, this implies a certain loss in 

energy + beam intensity

→ Then we need to hit the resonant energy 
(works mostly for 10-100 MeV range)

𝜎𝑏𝑟𝑒𝑚 ∼
𝑔𝑣𝑒
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Also significantly larger than 𝑒+𝑒− → 𝛾𝑉
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How to get to the exact energy ?

• Study models with large invisible width Γ𝑉
𝑖𝑛𝑣

→ Typically extremely 
important for DM-motivated models !



• Vary the beam energy

→ ”Scanning” procedure is required, 
varying the beam energy on non-negligible 
range

How to get to the exact energy ?

• Study models with large invisible width Γ𝑉
𝑖𝑛𝑣

→ Typically extremely 
important for DM-motivated models !

See e.g. 1802.04756

Thin target

𝑒+beams

Detector



• Use energy loss and secondary 𝑒+ production in the target 
to “scan” naturally various positron energies
→Requires a “not-too-thin” target to allow some 

evolution of the beam
→ Works to a certain extent also in electron-based 

machines

How to get to the exact energy ?

• Study models with large invisible width Γ𝑉
𝑖𝑛𝑣

→ Typically extremely 
important for DM-motivated models !

See e.g. 1802.04756

See e.g. 1802.03794, 2105.04540, 2206.03101

Thin target

𝑒+beams

Detector

Active target

𝑒−, 𝑒+beams

• Vary the beam energy

→ ”Scanning” procedure is required, 
varying the beam energy on non-negligible 
range



The thick target approach

• Effective to probe a large 
range of masses without 
varying the beam energy 
too much Resonant production 

from primary 𝑒+

Resonant production 
from “secondary” 𝑒+
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The thick target approach

• Effective to probe a large 
range of masses without 
varying the beam energy 
too much Resonant production 

from primary 𝑒+
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• Use straggling and 
bremsstrahlung processes to 
degrad the beam energy

• But FIP production occurs directly in 
the shower 
→Requires either a displaced signal or 

missing energy to escape background
→This works as soon as we have a 

coupling to neutrinos …

Missing
energy
threshold

Resonant production 
from “secondary” 𝑒+



In practice: limits on 𝐿𝜇 − 𝐿𝜏 gauge boson

• Use radiatively generated 
kinetic mixing for the 
production stage  + decay into 
neutrinos
→Recent limits from NA64 

promising !

LD, Nardi, Raggi, 2011.xxx

From 2206.03101

• Projections for 
→Poseydon (based on the 𝑒+ LNF 

beam at 0.5 GeV)

→ NA64-𝑒+ (POKER, with ~150 
GeV beam)

BaBar
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In practice: limits on 𝐿𝜇 − 𝐿𝜏 gauge boson

• Use radiatively generated 
kinetic mixing for the 
production stage  + decay into 
neutrinos
→Recent limits from NA64 

promising !

LD, Nardi, Raggi, 2211.xxx

• Projections for 
→Poseydon (based on the 𝑒+ LNF 

beam at 0.5 GeV)

→ NA64-𝑒+ (POKER, with ~150 
GeV beam)

BaBar

• Of course, even better constraints on DM 
scenarios with “tree-level” 𝑒± couplings
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From 2206.03101

Cf, e.g., Patrick’s talk yesterady



Resonant production: thin target

• Main idea: use resonant production and search for visible FIP 
decay in a noisy environment 
→ Mostly relevant with 𝑒+𝑒− final states (hard to produce a FIP with mass 
above the di-muon threshold resonantly) 

• Vary the beam energy, fit the background, and look for resonance
→ Simple analysis strategy

With f the beam spread, typically modelised

by a Gaussian distribution with spread 𝛿𝐸

• Main background is from Bhabha scattering, but can be fitted directly 
from the data
→ “Large angular acceptance” detector important to reduce the t-channel 

contribution 

Thin target

𝑒+beams

Detector



The X17 anomaly

16

• The signal: a possible 17 MeV boson in the ATOMKI 
spectrometer?
→ Production in excited nuclei 12C, 8Be and 4He, followed

by radiative decay 𝑁∗ → 𝑁 𝛾∗ → 𝑁 𝑒+𝑒−

2209.10795, 2104.10075, 
1504.01527

ATOMKI - 1504.01527

The SM signal: 𝑁∗ → 𝑁 𝛾∗ → 𝑁 𝑒+𝑒−
NP sigma: 𝑁∗ → 𝑁 𝑉 → 𝑁 𝑒+𝑒−

𝛾∗

𝐸𝑒− ≃ 𝐸𝑒+

𝐸𝑒− ≠ 𝐸𝑒+
Θ



PADME and the X17 boson, the perfect target

• We look for a light boson decaying to mostly to 𝑒+𝑒− with mass:

4He 2104.10075 

8Be 1504.01527 + cds.cern.ch/record/2312578

• Large coupling to quarks required + protophobia to avoid NA48 𝜋0

decay limits
→ sizeable coupling to electron also required to allow prompt decay



PADME and the X17 boson, the perfect target

• The narrow mass range plus model-independent 𝑒± couplings makes this 
anomaly a perfect target for a resonant search !

• The target energy range is [270 - 290] MeV → perfectly adapted to 𝑒+

beam in Frascati

• We look for a light boson decaying to mostly to 𝑒+𝑒− with mass:

4He 2104.10075 

8Be 1504.01527 + cds.cern.ch/record/2312578

• Large coupling to quarks required + protophobia to avoid NA48 𝜋0

decay limits
→ sizeable coupling to electron also required to allow prompt decay



Scanning strategy
• Several runs depending on 

the beam spread 𝛿𝐸
→Smaller spread implies 

lower background as the 
signal a “bump” with 
spread 𝛿𝐸

→Currently only LNF’s 
accelerator complex can 
provide a positron beam 
and vary its energy

• Include radiative return 
effects with use of NLO 
𝑒+𝑒− → 𝛾 𝑋 , with soft 
photon emission
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Projections for PADME – X17

• More details in this
afternoon’s presentation
by M. Raggi

• Complete simulation 
based on the current
PADME setup
→ Conservative: 2 · 1011 PoT, 
a 0.5% beam spread

→Aggressive: 4 · 1011 total 
PoT, a 0.25% beam spread

• Serve as a first “test run” for 
these kind of analysis
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Conclusion



Conclusion 

• Positron-based facilities allow to leverage resonant production to 
increase significantly signal rates
→ With the cost of having to scan over a large energy ranges

• Current planned strategies are
→ Either thick target + missing  energy (works both for DM-models and for 

neutrino decays)

→ Or thin target with visible decays + scan in beam energy

• First experimental example of the later strategy will be completed 
shortly by the PADME collaboration, with the X17 anomaly as a target 



Backup



Accelerator facilities (currently) available

• 𝑒+𝑒− colliders ( BaBaR, Belle-II …)
▪ Good production rates, large luminosity, but also background 

control and the small 𝑝𝑇 for the 𝑒+𝑒− pair → Still interesting 
avenue for X17 (displaced vertices?)

• 𝑒+𝑒− beam dumps: typically, 𝑒+ or 𝑒− machine (NA64, 
PADME, MAGIX, etc…) 
▪ Large production rates, can search for displaced vertices or 

reconstruct the 𝑒+𝑒− pair → particularly suitable

• Intensity beam dumps: typically, 𝑝 machines (beam 
neutrinos exp, SHiP). 
▪ Large backgrounds + protophobia of X17 + far away detectors →

Challenging for X17

• Rare meson/lepton decays → Promising, but with model-dependence

Missing energy



Secondary positron production
• A secondary positron population build up

From Marsicano et al. 1807.05884.

→ Background from the residual shower likely 
to swamp the signal  

→ X17 resonant production occurs at any point 
in the target, including at the end

the shower “convert energy to statistics”

𝑁𝑒+
𝑋17 ∼

𝐸𝑖𝑛𝑖/2

280 𝑀𝑒𝑉
𝑁𝑒−
𝑖𝑛𝑖

LD
, P
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.. but energy matters for decay lengths!

• Bremsstrahlung extracts most of the energy of the beam 

• By contrast, X17 from resonant production have relatively low energy

Make displaced 
signatures viable 
for higher energy 
experiments

• However, resonant production implies that the decay production satisfy 
precisely both 𝐸𝑋17

res ≃ 280 MeV and 𝑚𝑒𝑒 ≃ 𝑚𝑋17

𝛾𝑋17ℓ𝑋17 ∼ 3 cm
𝐸𝑋17

100 GeV

17 Me𝑉

𝑚𝑋17

3 ⋅ 10−4

𝑔𝑋𝑒

2

𝛾𝑋17ℓ𝑋17 ∼ 3 cm
𝐸𝑋17

100 GeV

17 Me𝑉

𝑚𝑋17

0.5 GeV−1

𝑔𝑋𝑒

2

(Vector)

(ALP)

𝐸𝑋17
res =

𝑚𝑋17
2

2 𝑚𝑒
≃ 280 MeV

Displaced signatures viable 
only for the lowest allowed 
couplings

𝛾𝑋17
res ≃ 15



Fixing notations: explicit Lagrangians for X17

• An axion-like particle (ALP) 𝑎, interacting via ҧ𝑓𝛾𝜇𝛾5𝑓

• A light vector 𝑉𝜇, potentially with both vector and axial couplings

Most of the 𝑒+/𝑒−-driven production rates shown in the rest of the talk satisfy 
approximately:

𝑒+/𝑒−-driven production rates are pretty agnostic 
concerning the X17 nature/couplings 

𝑔𝑎𝑓 corresponds to 
𝑄𝑎𝑓

𝑓𝑎
in Daniele 

Alves’s talk

𝑔𝑉𝑓 corresponds to 

𝑒휀𝑓 in Jonathan 

Feng’s and Tim Tait’s 
talks



The X17: the couplings

• It has to decay (mostly) visibly into 𝑒+𝑒−

→ For ATOMKI result, coupling with electron constrained only by a lower limit to ensure 
decay length smaller than ~cm (we will discuss it in detail in this talk)

→ Can have an invisible BR to e.g. a new dark sector particles but leads to even larger 
coupling to quarks

→ Strong constraints on neutrinos interactions from 𝜈𝑒𝑒
−scattering experiments

• Need a large couplings to quarks, but the actual couplings target depends 
on the X17 nature
→ As a reference for the vector case

See e.g. 1608.03591, assumed BRee at 1.

Huge couplings ! Protophobia 
needed to escape NA48

𝑔𝑉𝑢 + 2 𝑔𝑉𝑑 ∼ [0.6 ⋅ 10−3, 3 ⋅ 10−3]

2𝑔𝑉𝑢 + 𝑔𝑉𝑑 ≲ 0.4 ⋅ 10−3



X17: widths and productions

• Altogether we have the following situation

• Combined, the above requirements imply that the X17 must have a tiny 
width, mostly driven by the 𝑒+𝑒− decay

Γ𝑋 ∼
𝑔𝑉𝑒
2

12𝜋
𝑀𝑉 ∼ 0.5 eV ×

𝑔𝑉𝑒

0.001

2 More challenging 
to produce it on 
resonance

q

q

X 17

e+

e−

Nuclear processes

MeMesons decays

• 𝑒+/𝑒− beam dump 
and 𝑒+/𝑒− collider

• 𝑒(∗) → 𝑒 𝑋 emission

Vector case

q

q

X 17

e+

e−



Rare decays searches 
• Rare decays probes are both extremely effective in probing X17, often at 

the price of a large model dependence 

• Mesons decay probes (example from mostly last year)

o 𝜋0 → 𝛾𝑉17, for vector states:  NA48 bounds implies proto-phobic

o 𝐽/Ψ decays, charm couplings only

o𝐵∗ → 𝐵 𝑉17, 𝐷
∗ → 𝐷 𝑉17 for vector states

o 𝜋0→ 𝑎17 → 𝑒+𝑒−, 𝐾 → 𝜋 𝜋 𝑎17, 𝐾 → 𝜇𝜈 𝑎17

o 𝜋0→ 𝑎17 𝑎17 𝑎17 and other multi-leptons final states

e.g Alves et al. 1710.03764, 2009.05578

hep-ex/0610072

Ban et al. 2012.04190

Castro and Quintero 2101.01865

Feng et al. 
(1604.07411,1608.03591) 
2006.01151
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• If flavour-violation, many more available channels both in lepton decays 
and in “standard” flavoured meson decay.

• Also radiative emission from 𝜇 decay (cf Ann-Kathrin’s talk) 

Hostert and Pospelov 2012.02142


