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Building the e™ /e ™ fixed target of the future ?

* Many proposals for a next-generation electron fixed target/beam dump
machines

- For the long-lived limit, we want to do better
than experiments from the 80s-90s ... 1072 7—
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Building the e™ /e ™ fixed target of the future ?

* Many proposals for a next-generation electron fixed target/beam dump
machines

- For the long-lived limit, we want to do better

than experiments from the 80s-90s ... 10~2 b
: : 10344,
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Mapy experl.mental strateg|e§ pursued B .
closing the (in)-famous Mont’s gap 10-4
— Higher boost factor (FPF, SHIP, etc...) “ K LHCb
- Smaller beam dump size (NA64) / Displaced 107
vertices (LHCb) 6
— More statistics for bump-search method (Belle-I1) 10 ] R
... and many others ! 10-7 4 |
g Visible DP
This talk = use a different production o2 161 100 1ot
mechanism my [GeV]
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Going resonant ...

Bremsstrahlung
process

> Cross-section scales
as 72

= FIP carries away
most of the beam
energy: sensitivity
up to
my ~ Ee+
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Resonant process

- Cross-section x100
times larger

—>Scales as Z only

2
Yve

Opes ~ 5 M Z O(Ey — Eres)
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Also significantly larger than ete™ — yV



Going resonant ...
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 What are the trade-offs for resonant production ?

- First, we need to find positrons somewhere. Typically, this implies a certain loss in
energy + beam intensity Mﬁ

- Then we need to hit the resonant energy  Ejes =
(works mostly for 10-100 MeV range)

2m,
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How to get to the exact energy ?

e Study models with large invisible width
important for DM-motivated models !
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* Study models with large invisible width I3
important for DM-motivated models !

* Vary the beam energy

- ”Scanning” procedure is required,
varying the beam energy on non-negligible
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How to get to the exact energy ?

inv

* Study models with large invisible width I3
important for DM-motivated models !

- Typically extremely

* Vary the beam energy Thintarget  potector
- ”Scanning” procedure is required, e*beams FPs
varying the beam energy on non-negligible .1\57\7,“

FrAN8E€ Seee.g. 1802.04756

* Use energy loss and secondary e production in the target

to “scan” naturally various positron energies Active target 95
- Requires a “not-too-thin” target to allow some _ o+ Pt
. e~ ,e"beams -
evolution of the beam A-
— Works to a certain extent also in electron-based
machines

Bw.  Seee.g. 1802.03794, 2105.04540, 2206.03101



The thick target approach

e Use straggling and
bremsstrahlung process
degrades the beam energy

e Effective to probe a large
range of masses without
varying the beam energy
too much

Nyes (102 poT)

1 Pb target, g,/e=0.001, E; =11 GeV, Exn=4 GeV
Missing /
5]
10 energy /
1threshold
Reson”ant pI‘OdUC"EIOE..“_..-" Resonant production
from “secondary”-e

: from primary e™
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The thick target approach

e Use straggling and
bremsstrahlung processes to
degrad the beam energy

e Effective to probe a large
range of masses without
varying the beam energy
too much

e But FIP production occurs directly in
the shower

—>Requires either a displaced signal or
missing energy to escape background

—>This works as soon as we have a
coupling to neutrinos ...

\ -

Nyes (102 poT)

104

1 Pb target, g,/e=0.001, E; =11 GeV, Exn=4 GeV
Missing /
5
10 jenergy /
1threshold

Resonant production ..+

« TR
from “secondary*-e from primary e*

- dhar = Xo/2
—— da=Xo
— == dar=5Xo
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Resonant production
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In practice: limits on L, — L; gauge boson

e Use radiatively generated

kinetic mixing for the 107

production stage + decay into 10-2

neutrinos Cf, e.g., Patrick’s talk yesterady _
—>Recent limits from NA64 1073

promising |

* Projections for

—>Poseydon (based on the e™ LNF 1075

beam at 0.5 GeV)

> NA64-e* (POKER, with ~150 107°-

GeV beam) From 2206.03101

LD, Nardi, Raggi, 2011.xxx
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POKER (NA64et) - 10" poT
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In practice: limits on L, — L; gauge boson

e Use radiatively generated

N . -1
kinetic mixing for the 107"+
production stage + decay into 10-2.
neutrinos Cf, e.g., Patrick’s talk yesterady ;

—>Recent limits from NA64

promising ! .
" L 1074,
* Projections for o0 _
—>Poseydon (based on the e™ LNF 1075
beam at 0.5 GeV) :
> NA64-¢* (POKER, with ~150 10°°
GeV beam) From 2206.03101
1077

e Of course, even better constraints on DM
scenarios with “tree-level” eT couplings

LD, Nardi, Raggi, 2211.xxx
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\
Resonant production: thin target

* Main idea: use resonant production and search for visible FIP Thin target

tor
decay in a noisy environment s tbeams s
= Mostly relevant with e T e~ final states (hard to produce a FIP with mass “T3he

above the di-muon threshold resonantly)

* Vary the beam energy, fit the background, and look for resonance
— Simple analysis strategy

- NaiZ 2 With f the beam spread, typically modelised
rer po'ly ¢ ALp Gve , =
Nx,, " (E) = A brar om. f(Bres, E) by a Gaussian distribution with spread SOE

* Main background is from Bhabha scattering, but can be fitted directly
from the data

— “Large angular acceptance” detector important to reduce the t-channel
contribution



The X17 anomaly

Plastic scintillator Carbon fiber tube

* The signal: a possible 17 MeV boson in the ATOMKI
spectrometer?

- Production in excited nuclei 12C, 8Be and “He, followed
by radiative decay N* > Ny* - Nete~

, ATOMKI - 1504.01527

10
2209.10795, 2104.10075, [
1504.01527 i : . —
- 2 .7 NP sigma: N* > NV - N e%e
: — NFo- = Eo+ R s
The SM signal: N* > Ny* > Nete z e 2 c
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PADME and the X17 boson, the perfect target

e Large coupling to quarks required + protophobia to avoid NA48 1!
decay limits
—> sizeable coupling to electron also required to allow prompt decay

« We look for a light boson decaying to mostly to ete™ with mass:

(16.70 + 0.35 + 0.50 McV
Mx = ¢ 17.01 +0.16 MeV
| 16.94 +0.12 +0.21 MeV *He 2104.10075

8Be 1504.01527 + cds.cern.ch/record/2312578




PADME and the X17 boson, the perfect target

* Large coupling to quarks required + protophobia to avoid NA48 i°

decay limits
—> sizeable coupling to electron also required to allow prompt decay

« We look for a light boson decaying to mostly to ete™ with mass:

(16.70 + 0.35 + 0.50 MeV
Myx = ¢ 17.01 + 0.16 MeV
16.94 +0.12 +0.21 MeV

8Be 1504.01527 + cds.cern.ch/record/2312578

“He 2104.10075

e The narrow mass range plus model-independent e* couplings makes this
anomaly a perfect target for a resonant search !

* The target energy range is [270 - 290] MeV = perfectly adaptedto e™
beam in Frascati



Scanning strategy

e Several runs depending on
the beam spread 0F

—>Smaller spread implies
lower background as the
signal a “bump” with
spread OF

- Currently only LNF’s
accelerator complex can
provide a positron beam
and vary its energy

* Include radiative return
effects with use of NLO
ete™ - (y)X, with soft
photon emission

| C target 100um —— 2.10''poT, 8E =1.4 MeV, 13runs
| ge=2-10""

e 4. 10" 'poT , 8E =0.7 MeV, 13runs

==
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Background, 1.3y NS5
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Projections for PADME — X17
103

* More details in this KLOE, 2015 |

afternoon’s presentation
by M. Raggi
 Complete simulation

based on the current

PADME setup < 1074

- Conservative: 2 - 101! PoT,
a 0.5% beam spread

> Aggressive: 4 - 10! total
PoT, a 0.25% beam spread
e Serve as a first “test run” for
these kind of analysis

LTX-3NAVd

e R e
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Conclusion

* Positron-based facilities allow to leverage resonant production to
increase significantly signal rates

- With the cost of having to scan over a large energy ranges

* Current planned strategies are

— Either thick target + missing energy (works both for DM-models and for
neutrino decays)

— Or thin target with visible decays + scan in beam energy

* First experimental example of the later strategy will be completed
shortly by the PADME collaboration, with the X17 anomaly as a target
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Accelerator facilities (currently) available

* Intensity beam dumps: typically, » machines (beam .
neutrinos exp, SHiP).

= Large backgrounds + protophobia of X17 + far away detectors =
Challenging for X17

e eTe™ colliders ( BaBaR, Belle-Il ...)

= Good production rates, large luminosity, but also background
control and the small py for the e*e™ pair = Still interesting

avenue for X17 (displaced vertices?)
* eTe™ beam dumps: typically, e* or e~ machine (NA64, issing energy 7
PADME, MAGIX, etc...) =
" Large production rates, can search for displaced vertices or ) ) )
reconstruct the ete™ pair = particularly suitable P

* Rare meson/lepton decays > Promising, but with model-dependence



Secondary positron production

From Marsicano et al. 1807.05884.
crrrrprrorprrTT rrprrrrprrrTT T T T T T T T T T

= I [T I T — . ° °
§ jof 1 ¢ A secondary positron population build up
9 e o
£ F ":—._\__\ e “ )
5 ik — 5 the shower “convert energy to statistics
S [ Electron beam " Positron beam = 17 Eini/2 o
Sl e > N ~ Zini/Z  prini
3" ¢ T 2 e’ 280 MeV = €
230102; +'*—+_+ W target, 150GeV e~ beam, 10" EoT —— /. =15 X, .last 5 mm
% E *++ Car=30 Xp ,last S mm
§10 3|§_ ++ 103 m— =50 Xp ,last 5 mm
g * L
g107 i %
= Co bl I I AT I AT A O
g 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 O).(9= E/Eo1 §
I
—> X17 resonant production occurs at any point &
in the target, including at the end 3
1021
— Background from the residual shower likely
to swamp the signal 10! 2x10° 3x100 4x10f

Ay Myx [MEV]



.. but energy matters for decay lengths!

* Bremsstrahlung extracts most of the energy of the beam

Exi; \(17MeV\(3-107%\* Make displaced
100 GeV /) \ my, Jxe signatures viable
1\2 for higher energy
Ex17 ) (17 MeV) (O'S GeV ) (ALP) experiments
100 GeV My17 Jxe

* By contrast, X17 from resonant production have relatively low energy

Yx17tx17 ~ 3 cm (

Yx17tx17 ~ 3 cm (

m2, o Displaced signatures viable
Exis = 5 = 280 MeV =) yx17 =15 = op|y for the lowest allowed
° couplings

* However, resonant production implies that the decay production satisfy
precisely both EL$? ~ 280 MeV and m,, = myy-



Fixing notations: explicit Lagrangians for X17

* An axion-like particle (ALP) a, interacting via [y y°f

1 Jay corresponds to

1 Ja .
L C 5(8”a)(aua) — —m a’ + Z e (3’ CL f7 75]0 %m Daniele
f=Lq Alavesstalk

* A light vector V¥, potentially with both vector and axial couplings

1 1 2 r 5 gy ¢ corresponds to
L5 _ZV‘WVW/ T §MV VMV# T Z Vi“’ f (gi T gAf)f — egin]onathan
f=4,q Feng’s and Tim Tait’s
talks

Most of the e™ /e~ -driven production rates shown in the rest of the talk satisfy

approximately:
et /e -driven production rates are pretty agnostic

MeGar < Gve  mmp concerning the X17 nature/couplings



The X17: the couplings

* Need a large couplings to quarks, but the actual couplings target depends

on the X17 nature

—> As a reference for the vector case

l9vu + 2 gva

129vy + gva

~[0.6-1073,3-1073] Seeeg 1608.03591, assumed BR,, at 1.

Huge couplings ! Protophobia

10-3
5 04-10 needed to escape NA48

* It has to decay (mostly) visibly into ete™

— For ATOMKI result, coupling with electron constrained only by a lower limit to ensure
decay length smaller than ~cm (we will discuss it in detail in this talk)

— Can have an invisible BR to e.g. a new dark sector particles but leads to even larger

coupling to quarks

—> Strong constraints on neutrinos interactions from v,e ~scattering experiments



X17: widths and productions

 Combined, the above requirements imply that the X17 must have a tiny
width, mostly driven by the e*e™ decay

Vector case

2 2 More challenging
dve Jve
Iy ~ Lon My ~ 0.5eV X (0_001) ==)  to produce it on
resonance

* Altogether we have the following situation

Nuclear processes

e * e%/e” beam dump
and e™ /e~ collider
« e® - e X emission

lesons decays



Rare decays searches

e Rare decays probes are both extremely effective in probing X17, often at
the price of a large model dependence

* Mesons decay probes (example from mostly last year)

Vector state

Axion

\ -

_A

hep-ex/0610072 Feng et al
0 _ : , ) . .
o m° = yV;,, for vector states: NA48 bounds implies proto-phobic (1604.07411,1608.03591)
2006.01151

r

o J/W decays, charm couplings only  Banetal. 2012.04190

. oB* - BV;;,D" - D V,, for vector states Castro and Quintero 2101.01865

r —
onm'>a;, »ete”, K > n(m)a;;, K > uvay;  egAlvesetal. 1710.03764, 2009.05578
.o m%> ay; a;; a;; and other multi-leptons final states Hostert and Pospelov 2012.02142

f flavour-violation, many more available channels both in lepton decays
and in “standard” flavoured meson decay.

Also radiative emission from u decay (cf Ann-Kathrin’s talk)



