HNLs at neutrino telescopes

Pilar Coloma

FIPs Workshop (Oct 20th, 2022)

Outline

- Production of HNL inside neutrino detectors
- Production of HNL inside the Earth mantle
- Production of HNL in the atmosphere

 \rightarrow I will focus on cases where the HNL decays visibly inside the detector

Heavy neutrinos

$$u_{\alpha} = \sum_{i} U_{\alpha i} \nu_{i} + U_{\alpha 4} N$$
Pilar Coloma - IFT

Heavy neutrinos

For HNLs around the GeV scale:

$$\nu_{\alpha} = \sum_{i} U_{\alpha i} \nu_{i} + U_{\alpha 4} N$$

For HNLs around the GeV scale:

For HNLs around the GeV scale:

$$\nu_{\alpha} = \sum_{i} U_{\alpha i} \nu_{i} + U_{\alpha 4} N$$

$$L_{lab,N} \simeq 30 \left(\frac{10^{-3}}{|U_{\tau 4}|^2}\right) \left(\frac{E_N}{10 \text{ GeV}}\right) \text{ m}$$
 For $\begin{cases} m_N \sim 1 \text{ GeV} \\ |U_{e4}| = |U_{\mu 4}| = 0 \end{cases}$

See e.g., Bondarenko, Boyarsky, Gorbunov, Ruchaisky, 1805.08567; Ballett, Boschi, Pascoli, 1905.00284; Coloma, Fernandez-Martinez, Gonzalez-Lopez, Hernandez-Garcia, Pavlovic, 2007.03701

For HNLs around the GeV scale:

$$\nu_{\alpha} = \sum_{i} U_{\alpha i} \nu_{i} + U_{\alpha 4} N$$

$$L_{lab,N} \simeq 30 \left(\frac{10^{-3}}{|U_{\tau 4}|^2}\right) \left(\frac{E_N}{10 \text{ GeV}}\right) \text{ m}$$
 For $\begin{cases} m_N \sim 1 \text{ GeV} \\ |U_{e4}| = |U_{\mu 4}| = 0 \end{cases}$

 \rightarrow U_{t4} is particularly hard to probe using fixed target experiments, though...

(1) Production inside the detector

Double-bangs are expected at UHE

Figure from: Tau Neutrinos in IceCube, D. F. Cowen, TeVPA'06 proceedings See also Icecube coll., 1509.06212

Low-energy Double-Bangs?

Key requirements for Icecube

- Trigger has to go off during first shower: 3-4 DOMs hit
- Minimum energy/distance to reach a DOM (limited by ice absorption): 36 m
- Minimum separation between the two showers (limited by time resolution, 20 m)

Vanilla scenario: only mixing

→ Newer bounds obtained in: Boiarska et al, 2107.14685 (CHARM recast); ArgoNeut coll., 2106.13684; and Barouki, Marocco, Sarkar, 2208.00416 (BEBC recast)

Non-minimal scenarios

For example:

Dipole portal: $\mu \left(\bar{\nu}_L \sigma_{\mu\nu} N \right) F^{\mu\nu}$

Light Z':

 $-eq_f\chi\bar{f}\gamma^{\mu}fZ'_{\mu}+U^*_{\alpha4}g'\bar{\nu}_{\alpha}\gamma^{\mu}P_LNZ'_{\mu}+\dots$

→ These attracted lots of attention, in the context of MiniBooNE/LSND:

Gninenko, 0902.3802 & 1009.5536; Ballett et al, 1808.02915; Bertuzzo et al, 1807.09877; Fischer, Hernandez-Cabezudo, Schwetz, 1909.09561; Arguelles, Hostert, Tsai, 1812.08768; Magill et al, 1803.03262; Abdullahi, Hostert, Pascoli, 2007.11813; Kamp et al, 2206.07100, ...

Non-minimal scenarios

Dipole $L_{lab,N} \simeq 100 \left(\frac{10^{-8} \mu_B}{\mu_\nu}\right) \left(\frac{E_N}{10 \text{ GeV}}\right) \text{ m}$ $\nu_\tau - N$

DONUT DONUT IceCube/DeepCore

 10^{0}

 10^{1}

For $m_N \sim 100 \text{ MeV}$

Coloma, Machado, Martinez-Soler and Shoemaker, 1707.08573 (see also Coloma, 1906.02106)

 10^{-1}

 m_N (GeV)

 10^{-2}

Pilar Coloma - IFT

 10^{-3}

 10^{-4}

10⁻⁵

 10^{-6}

 10^{-7}

 10^{-8}

 10^{-9}

 10^{-10}

 10^{-4}

 $\mu_{\rm tr}/\mu_B$

DUNE, SK, and HK

Much smaller volume, but...

- Much better spatial resolution
- Lower energy sensitivity, where the incident flux is highest
- Availability of an intense neutrino beam, besides atmospheric neutrinos
- Near detectors also available

DUNE, SK, and HK

Atkinson, Coloma, Martinez-Soler, Rocco, Shoemaker, 2105.09357 (see also Schwetz, Zhou, Zhu, 2105.09699)

(2) HNL production inside the Earth

From solar neutrino up-scattering

Plestid, 2010.04193

(for bounds from upscattering inside Borexino, see Brdar et al, 2007.15563)

From UHE neutrino up-scattering

Huang, Jana, Lindner, Rodejohann, 2204.10347

(3) HNL production in the atmosphere

Survival probability depends on the distance to the detector (which in turn depends on zenith angle)

Event rates

SK I-IV (multi-GeV, FC, e-like) MESE sample at Icecube Super-Kamiokande coll. 1710.09126 Icecube collaboration, 1410.1749 $c\tau = 10^{-4} \text{ km}, BR(D_s \rightarrow N) = 7.4 \cdot 10^{-3}$ Sig. + bg. Sig. + bg. 900 Bg. only $m_N = 0.6 \text{ GeV}$ Bg. only Data Data 800 Events/5326 days Events/641.0 days 10^{1} 400 10^{0} 300 $c\tau = 5.0e-01 \text{ km}, BR(D_s \to N) = 1.5e-03, m_N = 0.6 \text{ GeV}$ 200 L 0.2 0.4 0.6 0.8 1.0 10^{3} 10^{2} 10^{4} 10^{5} 10^{6} 10^{7} $\cos\theta$ $E_{dep}(\text{GeV})$

Argüelles, Coloma, Hernandez, Muñoz, 1910.12839

Model-independent results

Argüelles, Coloma, Hernandez, Muñoz, 1910.12839

Vanilla scenario – $U_{\tau 4}$

Argüelles, Coloma, Hernandez, Muñoz, 1910.12839

Argüelles, Coloma, Hernandez, Muñoz, 1910.12839 Coloma, Hernandez, Muñoz, Shoemaker, 1911.09129

An excess would be expected at Icecube in the context of dipole interactions and MiniBooNE

Masip, 1402.0665

Interesting possibilities at SK, sensitive to lower energies

Asaka, Watanabe, 1202.0725 Kusenko, Pascoli, Semikoz, hep-ph/0405198

Figure from Asaka, Watanabe, 1202.0725

Coloma, Hernandez, Munoz, Shoemaker, 1911.09129 (see also Kusenko, Pascoli, Semikoz, hep-ph/0405198; Asaka, Watanabe, 1202.0725)

Summary

- I have given an overview of several possibilities to search for the decay of HNL using neutrino telescopes & atmospheric neutrino detectors:
 - Production inside the detector: low-energy double-bang signals
 - Production from up-scattering in the Earth
 - Production in the atmosphere and decay inside neutrino detectors
- \rightarrow Plenty of room to improve! 2D binning, smaller bins, systematics, bgs, ...
 - Other experiments? KM3NeT, ORCA?
 - The same approach may be applicable to other long-lived particles

Thanks!

Work supported by Grants RYC2018-024240-I PID2019-108892RB-I00, CEX2020-001007-S

Backup

Non-minimal scenarios

Dipole

Light Z'

Shoemaker, 1707.08573

Data sets

MESE sample at Icecube (641 days)

Icecube collaboration, 1410.1749

Pilar Coloma - IFT

Data from SK I-IV (5,326 days) Super-Kamiokande coll. 1710.09126

Data sets

Vanilla scenario – $U_{\tau 4}$

Boiarska, Boyarsky, Mikulenko, Ovchynnikov, 2107.14685