The Standard Model CSU-NUPAX/CERN IRES Program

Johan S Bonilla March 1st and 3rd, 2022

What is a Particle?

Classical

$$\psi_n(x) = \sqrt{rac{1}{2^n \, n!}} \cdot \Big(rac{m\omega}{\pi \hbar}\Big)^{1/4} \cdot e^{-rac{m\omega}{2}}$$

Does NOT play with special relat

See Particle Data Group at LBNL

Quantum Field Theory

$$\frac{dx^2}{\hbar} \cdot H_n\left(\sqrt{\frac{m\omega}{\hbar}}x\right),$$
nice

$$egin{aligned} \hat{\phi}(\mathbf{x},t) &= \int rac{d^3 p}{(2\pi)^3} rac{1}{\sqrt{2\omega_\mathbf{p}}} \left(\hat{a}_\mathbf{p} e^{-i\omega_\mathbf{p}t + i\mathbf{p}\cdot\mathbf{x}} + \hat{a}_\mathbf{p}^\dagger e^{i\omega_\mathbf{p}t}
ight. \ \mathcal{L} &= rac{1}{2} (\partial_\mu \phi) \left(\partial^\mu \phi
ight) - rac{1}{2} m^2 \phi^2 - rac{\lambda}{4!} \phi^2 \end{aligned}$$

Maxwell's E&M Equations

Formulation	Homogeneous equations
Fields 3D Euclidean space + time	$ abla \cdot {f B} = 0 onumber \ abla onumber \ abla + rac{\partial {f B}}{\partial t} = 0 onumber \ abla onumber \ abla + rac{\partial {f B}}{\partial t} = 0$
Potentials (any gauge) 3D Euclidean space + time	$\mathbf{B} = abla imes \mathbf{A}$ $\mathbf{E} = - abla arphi - rac{\partial \mathbf{A}}{\partial t}$
Potentials (Lorenz gauge) 3D Euclidean space + time	$egin{aligned} \mathbf{B} &= abla imes \mathbf{A} \ \mathbf{E} &= - abla arphi - rac{\partial \mathbf{A}}{\partial t} \ abla t \ abla \cdot \mathbf{A} &= -rac{1}{c^2} rac{\partial arphi}{\partial t} \end{aligned}$

Gauge Transformations

$$arphi
ightarrow arphi - rac{\partial \psi}{\partial t}$$

 $\begin{array}{ll} \partial_{\mu}A^{\mu}=0\ (\mu=0,1,\,2,\,3)\ , & \mbox{Lorenz gauge} \\ \hlinelabel{eq:powerset} \pmb{\nabla}\cdot\pmb{A}=\partial_{j}A_{j}=0\ (j=1,\,2,\,3)\ , & \mbox{Coulomb gauge or radiation gauge} \\ n_{\mu}A^{\mu}=0\ (n^{2}=0)\ , & \mbox{light cone gauge} \\ A_{o}=0\ , & \mbox{Hamiltonian or temporal gauge} \\ A_{3}=0\ , & \mbox{axial gauge} \\ x_{\mu}A^{\mu}=0\ , & \mbox{Fock-Schwinger gauge} \\ x_{j}A_{j}=0\ , & \mbox{Poincaré gauge} \end{array}$

Identities

$$abla \cdot (
abla imes {f A}) =$$

$$\mathbf{A} + \nabla \psi$$

$$abla imes (
abla arphi) =$$

$$\mathbf{E} = -\nabla\varphi - \frac{\partial\mathbf{A}}{\partial t} - \nabla\frac{\partial\psi}{\partial t} = -\nabla\left(\varphi + \frac{\partial\psi}{\partial t}\right) - \frac{\partial}{\partial t}$$

$$\mathbf{B} =
abla imes (\mathbf{A} +
abla \psi) =
abla imes \mathbf{A}.$$

Standard Model of Elementary Particles

$$egin{bmatrix} |V_{ud}| & |V_{us}| & |V_{ub}| \ |V_{cd}| & |V_{cs}| & |V_{cb}| \ |V_{td}| & |V_{ts}| & |V_{tb}| \end{bmatrix} = egin{bmatrix} 0.97370 \pm 0. \ 0.221 \pm 0. \ 0.0080 \pm 0. \end{aligned}$$

00014	0.2245 ± 0.0008	0.00382 ± 0.00024]
004	0.987 ± 0.011	0.0410 ± 0.0014
0003	0.0388 ± 0.0011	1.013 ± 0.030]

Particle Detection

Detecting Particles with ATLAS/CMS

Photon: Neutral, EM

Jet: Calorimeter Object

(Transverse)

ATLAS Tracker

Barrel semiconductor tracker Pixel detectors Barrel transition radiation tracker End-cap transition radiation tracker End-cap semiconductor tracker

6.2m

Silicon (Semiconductor) Strip Detectors

REAR SIDE METAL CONTACT

Liquid Argon Calorimeter

LAr hadronic / end-cap (HEC)

LAr electromágnetic end-cap (EMEC)

> LAr electromagnetic barrel

/ LAr forward (FCal)

1111111111

CMS DETECTOR

7 4		C	1 1
Overall len	gth	: 28	8.7 m
Overall dia	meter	:15	5.0 m
Total weigl	ht	: 14	1,000 t

LP2021 — Johan S Bonilla — UCDavis, CMS, CSC

CMS DETECTOR

7 4		C	1 1
Overall len	gth	: 28	8.7 m
Overall dia	meter	:15	5.0 m
Total weigl	ht	: 14	1,000 t

LP2021 — Johan S Bonilla — UCDavis, CMS, CSC

 High resolution silicon tracking in $|\eta| < 2.4$

CMS DETECTOR

Magnatic	field
Overall length	: 28.7 m
Overall diameter	:15.0 m
Total weight	: 14,000 t

LP2021 — Johan S Bonilla — UCDavis, CMS, CSC

- High resolution silicon tracking in $|\eta| < 2.4$
- PbWO₄ EM Calorimetry

CMS DETECTOR

Total weight	: 14,000 t
Overall diameter	: 15.0 m
Overall length	: 28.7 m
Magnetic	field

LP2021 — Johan S Bonilla — UCDavis, CMS, CSC

• High resolution silicon tracking in $|\eta| < 2.4$

CMS DETECTOR

Magnetic	field
Overall length	: 28.7 m
Overall diameter	:15.0 m
Total weight	: 14,000 t

- PbWO₄ EM Calorimetry
- Brass Hadron Calorimeter

 Provides excellent energy resolution
 for strongly-coupled parton showers

CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL) ~76,000 scintillating PbWO₄ crystals

HADRON CALORIMETER (HCAL) Brass + Plastic scintillator ~7,000 channels

LP2021 — Johan S Bonilla — UCDavis, CMS, CSC

• High resolution silicon tracking in $|\eta| < 2.4$

CMS DETECTOR

Overall length	: 28.7 m
Overall length	: 28.7 m
Overall length	: 28.7 m
Overall diameter	: 14,000 t : 15.0 m
	14.000 /

- PbWO₄ EM Calorimetry
- Brass Hadron Calorimeter

 Provides excellent energy resolution
 for strongly-coupled parton showers
- Excellent, Robust Muon System
 - Superconducting solenoid creates
 3.87 magnetic field in tracker and calorimeters, 27 is steel return yoke

CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL) ~76,000 scintillating PbWO₄ crystals

HADRON CALORIMETER (HCAL) Brass + Plastic scintillator ~7,000 channels

LP2021 — Johan S Bonilla — UCDavis, CMS, CSC

• High resolution silicon tracking in $|\eta| < 2.4$

CMS DETECTOR

Magnetic	field
Overall length	:28.7 m
Overall diameter	: 15.0 m
Total weight	: 14,000 t

- PbWO₄ EM Calorimetry
- Brass Hadron Calorimeter

 Provides excellent energy resolution
 for strongly-coupled parton showers
- Excellent, Robust Muon System
 - Superconducting solenoid creates
 3.87 magnetic field in tracker and
 calorimeters, 27 is steel return yoke
- Cost: ~500 MCHF
 + ~200 MCHF (Upgrades)

CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL) ~76,000 scintillating PbWO₄ crystals

HADRON CALORIMETER (HCAL) Brass + Plastic scintillator ~7,000 channels

LP2021 — Johan S Bonilla — UCDavis, CMS, CSC

- Muon system employs different technologies
 - Barrel: Drift Tube + Resistive Plate Chamber (RPC)
 - End-Caps: CSC + RPC + Gas Electron Multipliers (GEM)

LP2021 — Johan S Bonilla — UCDavis, CMS, CSC

<u>CMS-TDR-016</u>

- Muon system employs different technologies
 - Barrel: Drift Tube + Resistive Plate Chamber (RPC)
 - End-Caps: CSC + RPC + Gas Electron Multipliers (GEM)

LP2021 — Johan S Bonilla — UCDavis, CMS, CSC

<u>CMS-TDR-016</u>

- Muon system employs different technologies
 - Barrel: Drift Tube + Resistive Plate Chamber (RPC)

- Muon system employs different technologies
 - Barrel: Drift Tube + Resistive Plate Chamber (RPC)

- Muon system employs different technologies
 - Barrel: Drift Tube + Resistive Plate Chamber (RPC)

- Muon system employs different technologies
 - Barrel: Drift Tube + Resistive Plate Chamber (RPC)

LHCb Detector

Weight: 5,600 tonnes Height: 10 m Length: 20 m

RICH2

Tracking Stations

Hadronic Calorimeter Muon **Stations**

ALICE

FCC-hh Reference Detector

- 4T, 10m solenoid, unshielded ٠
- Forward solenoids, unshielded ٠
- Silicon tracker ٠
- Barrel ECAL LAr ٠
- Barrel HCAL Fe/Sci ٠
- Endcap HCAL/ECAL LAr ٠
- Forward HCAL/ECAL LAr •

50m length, 20m diameter similar to size of ATLAS

