The Standard Model CSU-NUPAX/CERN IRES Program

Johan S Bonilla March 1st and 3rd, 2022

What is a Particle?

Classical

$$\psi_n(x) = \sqrt{rac{1}{2^n \, n!}} \cdot \Big(rac{m\omega}{\pi \hbar}\Big)^{1/4} \cdot e^{-rac{m\omega}{2}}$$

Does NOT play with special relat

<u>See Particle Data Group at LBNL</u>

Quantum Field Theory

$$\frac{dx^2}{\hbar} \cdot H_n\left(\sqrt{\frac{m\omega}{\hbar}}x\right),$$
nice

$$egin{aligned} \hat{\phi}(\mathbf{x},t) &= \int rac{d^3 p}{(2\pi)^3} rac{1}{\sqrt{2\omega_\mathbf{p}}} \left(\hat{a}_\mathbf{p} e^{-i\omega_\mathbf{p}t + i\mathbf{p}\cdot\mathbf{x}} + \hat{a}_\mathbf{p}^\dagger e^{i\omega_\mathbf{p}t}
ight. \ \mathcal{L} &= rac{1}{2} (\partial_\mu \phi) \left(\partial^\mu \phi
ight) - rac{1}{2} m^2 \phi^2 - rac{\lambda}{4!} \phi^2 \end{aligned}$$

Maxwell's E&M Equations

l	Formulation	Homogeneous equations
	Fields 3D Euclidean space + time	$ abla \cdot \mathbf{B} = 0$ $ abla \times \mathbf{E} + rac{\partial \mathbf{B}}{\partial t} = 0$
	Potentials (any gauge) 3D Euclidean space + time	$\mathbf{B} = abla imes \mathbf{A}$ $\mathbf{E} = - abla arphi - rac{\partial \mathbf{A}}{\partial t}$
	Potentials (Lorenz gauge) 3D Euclidean space + time	$egin{aligned} \mathbf{B} &= abla imes \mathbf{A} \ \mathbf{E} &= - abla arphi - rac{\partial \mathbf{A}}{\partial t} \ abla t \ abla \cdot \mathbf{A} &= -rac{1}{c^2} rac{\partial arphi}{\partial t} \end{aligned}$

Gauge Transformations

$$arphi
ightarrow arphi - rac{\partial \psi}{\partial t}$$

 $\begin{array}{ll} \partial_{\mu}A^{\mu}=0\ (\mu=0,1,\,2,\,3)\ , & \mbox{Lorenz gauge} \\ \hlinelabel{eq:phi} \nabla\cdot \pmb{A}=\partial_{j}A_{j}=0\ (j=1,\,2,\,3)\ , & \mbox{Coulomb gauge or radiation gauge} \\ n_{\mu}A^{\mu}=0\ (n^{2}=0)\ , & \mbox{light cone gauge} \\ A_{o}=0\ , & \mbox{Hamiltonian or temporal gauge} \\ A_{3}=0\ , & \mbox{axial gauge} \\ x_{\mu}A^{\mu}=0\ , & \mbox{Fock-Schwinger gauge} \\ x_{j}A_{j}=0\ , & \mbox{Poincaré gauge} \end{array}$

Identities

$$abla \cdot (
abla imes {f A}) =$$

$$\mathbf{A} + \nabla \psi$$

$$abla imes (
abla arphi) =$$

$$\mathbf{E} = -\nabla\varphi - \frac{\partial\mathbf{A}}{\partial t} - \nabla\frac{\partial\psi}{\partial t} = -\nabla\left(\varphi + \frac{\partial\psi}{\partial t}\right) - \frac{\partial}{\partial t}$$

$$\mathbf{B} =
abla imes (\mathbf{A} +
abla \psi) =
abla imes \mathbf{A}.$$

Standard Model of Elementary Particles

$$egin{bmatrix} |V_{ud}| & |V_{us}| & |V_{ub}| \ |V_{cd}| & |V_{cs}| & |V_{cb}| \ |V_{td}| & |V_{ts}| & |V_{tb}| \end{bmatrix} = egin{bmatrix} 0.97370 \pm 0. \ 0.221 \pm 0. \ 0.0080 \pm 0. \end{aligned}$$

.00014	0.2245 ± 0.0008	0.00382 ± 0.00024]	
.004	0.987 ± 0.011	0.0410 ± 0.0014	
.0003	0.0388 ± 0.0011	1.013 ± 0.030]	

Particle Detection

General Collider Detector

Detecting Particles with ATLAS/CMS

Photon: Neutral, EM

Jet: Calorimeter Object

(Transverse)

ATLAS Tracker

Barrel semiconductor tracker Pixel detectors Barrel transition radiation tracker End-cap transition radiation tracker End-cap semiconductor tracker

6.2m

Silicon (Semiconductor) Strip Detectors

REAR SIDE METAL CONTACT

Liquid Argon Calorimeter

LAr hadronic / end-cap (HEC)

LAr electromágnetic end-cap (EMEC)

> LAr electromagnetic barrel

LAr forward (FCal)

1111111111

The Compact Muon Solenoid

• High resolution silicon tracking in $|\eta| < 2.4$

CMS DETECTOR

n
n
0 t

- PbWO₄ EM Calorimetry
- Brass Hadron Calorimeter

 Provides excellent energy resolution
 for strongly-coupled parton showers
- Excellent, Robust Muon System
 - Superconducting solenoid creates
 3.87 magnetic field in tracker and
 calorimeters, 27 is steel return yoke
- Cost: ~500 MCHF
 + ~200 MCHF (Upgrades)

CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL) ~76,000 scintillating PbWO₄ crystals

HADRON CALORIMETER (HCAL) Brass + Plastic scintillator ~7,000 channels

LP2021 — Johan S Bonilla — UCDavis, CMS, CSC

J. Phys.: Conf. Ser. 513 022032

What Are Cathode Strip Chambers (CSCs)?

- Muon system employs different technologies
 - Barrel: Drift Tube + Resistive Plate Chamber (RPC)

LP2021 — Johan S Bonilla — UCDavis, CMS, CSC

LHCb Detector

Weight: 5,600 tonnes Height: 10 m Length: 20 m

RICH2

Tracking Stations

Hadronic Calorimeter Muon **Stations**

ALICE

FCC-hh Reference Detector

- 4T, 10m solenoid, unshielded ٠
- Forward solenoids, unshielded ٠
- Silicon tracker ٠
- Barrel ECAL LAr ٠
- Barrel HCAL Fe/Sci ٠
- Endcap HCAL/ECAL LAr ٠
- Forward HCAL/ECAL LAr •

50m length, 20m diameter similar to size of ATLAS

Intro to Group Theory

- What is a group? — What is an example of a group?
- What is a field?
 - How are fields related to groups?
 - What is a vector field? Is that a group?
 - How is a field related to groups?

A field is a set in which two binary operations (addition/sum and multiplication/product) and axioms: Associativity, distributivity, commutativity (only abelian), and have unique inverses and identities for both operations

A group is a **set** defined by axioms: 1) an associative operation X, 2) G must have an identity g_I , 3) For any element g_1 of G there exists a g_2 , such that $g_1 X g_2 = g_I$, the identity of the group

Groups <-> Symmetries

- Groups can by ANYTHING that satisfies the axioms
 - Solutions to equations can be closed groups (think E&M) e.g: if $T(f_1) = 0$ and $T(f_2) = 0$, then $T(f_1+f_2) = T(f_1)+T(f_2)=0$
 - Eigenvectors can be a group

 - Turns out groups can be represented by matrices
- U(N) vs SO(N) vs SU(N)
 - Unitary: $U^{\dagger}U = UU^{\dagger} = UU^{-1}$
 - Orthogonal: $Q^T Q = Q Q^T = I Q Q^T$
 - Special Unitary/Orthogonal: Unita

- Rotations are definitely a group...so are rotations that leave a system invariant

$$= I$$

$$\rightarrow Q^{T} = Q^{-1}$$
ary/Orthogonal with norm 1

Symmetries in Physics

- For a set of transformations G (group), a theory (Lagrangian) is symmetric/ invariant under G if all elements of G transform the states/operators in such a way that leaves the FORM of the Lagrangian
- Unitary Group of degree 1, U(1) - Set of single $(n=1 \rightarrow nXn=1x1 matrices)$ complex numbers with norm 1 $-e^{i\theta}$ for $\theta \in [0,2\pi]$ - Just a circle!
- Global Symmetry -> for any θ -> Conserved quantity (Noether's theorem)
- Local/gauge symmetry -> for $\theta(x)$ dependent on x -> gauge
- Redundancies in a theory -> same physics

Standard Model Symmetries $U(1) \times SU(2)_L \times SU(3) \rightarrow U(1)_{OED} \times SU(3)_C$

- $U(1) \times SU(2)_{I}$ represents Electroweak symmetry Goldstone bosons -> physical bosons - Higgs 'eats' a degree of freedom
- SU(3) represent Quantum Chromo Dynamics (QCD, aka strong force) No symmetry breaking Decoupled from Electroweak sector

- 4 degrees of freedom -> electroweak symmetry breaking -> 3 leftover