The Standard Model CSU-NUPAX/CERN IRES Program

Johan S Bonilla March 1st and 3rd, 2022

Standard Model of Elementary Particles

Standard Model Symmetries $U(1) \times SU(2)_L \times SU(3) \rightarrow U(1)_{OED} \times SU(3)_C$

- $U(1) \times SU(2)_{I}$ represents Electroweak symmetry Goldstone bosons -> physical bosons - Higgs 'eats' a degree of freedom
- SU(3) represent Quantum Chromo Dynamics (QCD, aka strong force) No symmetry breaking Decoupled from Electroweak sector

- 4 degrees of freedom -> electroweak symmetry breaking -> 3 leftover

Lorentz Group

- Set of all Lorentz transformations
 - Invariant physics in 4-dimensional spacetime
 - 3 degrees of freedom for rotations
 - 3 degrees of freedom for translations (boosts)
 - 3+3=6 generators of group
- SO(4): Special Ordinary Group of Rank 4 - Happens to have 6 generators
 - Turns out SO(4)=SU(2)xSU(2) -> Left/Right-Handed

Lorentz boost (x direction)

$$egin{aligned} t' &= \gamma \left(t - rac{vx}{c^2}
ight) \ x' &= \gamma \left(x - vt
ight) \ y' &= y \ z' &= z \end{aligned}$$

 Useful since respects Lorentz Invariance, and lines up with evidence of 'handed-ness' of physics (see Wu and Goldhaber experiments in 1950's)

Writing Down a Lagrangian

- For each Gauge-Symmetry -> Field Tensor $F^{\mu\nu}$ - SU(3) -> G^a_μ (x8) - SU(2) -> W^{i}_{μ} (x3) $- U(1) \rightarrow B_{\mu}(x1)$
- Total derivative involves all field tensors
- Introduce chiral (handed) fermions — LH: Doublets; RH: Singlets (Y==0)

$$\Big)_L, \quad Q_{L_a} = \left(\begin{array}{c} u_a \\ d_a \end{array} \right)_L$$

Lagrangian of the Standard Model

 $\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + i\bar{\psi}\mathcal{D}\psi + H.C. \text{ (Kinetics and Gauge-Interactions)}$

+ $|D_{\mu}\phi|^2 + V(\phi)$ (Higgs) + $\psi_i y_{ij}\psi_j\phi + H.C.$ (Yukawa).

Higgs Sector -> Leads to effective mass terms (Yukawa)

No mass terms!! Everything is massless!!!!

The Higgs Potential

- Higgs potential: $V(\phi) = -\frac{1}{2}\mu^2 \phi^{\dagger} \phi$
- Minimum defines Vacuum Expectation Value VEV $\equiv v \equiv \frac{\mu^2}{\lambda}$ such that $\langle \phi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix}$
- Choose representation of scalar field as

$$\phi = \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v+h \end{pmatrix}$$

• Where we start: $SU(2)_L \otimes U(1)_Y \Rightarrow (W^{1,2,3}_{\mu}, B_{\mu})$ three generators

$$\phi + rac{1}{4}\lambda(\phi^\dagger\phi)^2$$

 $|\lambda| > 0$ and $|\mu| < 0$.

Electroweak Symmetry Breaking Expanding the Total Derivative

$$Z_{\mu} \equiv \frac{1}{\sqrt{g_L^2 + g_Y^2}} \left(g_Y W_{\mu}^3 + g_L \right)$$

$$A_{\mu} \equiv \frac{1}{\sqrt{g_L^2 + g_Y^2}} \left(g_Y W_{\mu}^3 \right)$$

 (B_{μ}) such that $m_Z = \frac{v}{2}\sqrt{g_L^2 + g_Y^2},$

 $+g_L B_\mu$) such that $m_A = 0$.

Lagrangian of the Standard Model

 $\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + i\bar{\psi}\mathcal{D}\psi + H.C. \text{ (Kinetics and Gauge-Interactions)}$

+ $|D_{\mu}\phi|^2 + V(\phi)$ (Higgs) + $\psi_i y_{ij}\psi_j\phi + H.C.$ (Yukawa).

Higgs Sector -> Leads to effective mass terms (Yukawa)

No mass terms!! Everything is massless!!!!

Quantum Numbers of the Standard Model

Type	Mass	Lifetime	\mathbf{Q}	J	Υ	P	Color
e	$0.511 { m MeV}$	stable	-1	1/2	$-\frac{1}{2}$	-1/2	0
$ u_e$	small	oscillates	0	$^{1/2}$	$-\frac{\overline{1}}{2}$	+1/2	0
μ	$106 { m ~MeV}$	$\mathcal{O}(10^{-6})s$	-1	$^{1/2}$	$-\frac{\overline{1}}{2}$	-1/2	0
$ u_{\mu}$	small	oscillates	0	$^{1/2}$	$-\frac{\overline{1}}{2}$	+1/2	0
au	$1776~{\rm MeV}$	$\mathcal{O}(10^{-13})s$	-1	$^{1/2}$	$-\frac{\overline{1}}{2}$	-1/2	0
$ u_{ au}$	small	oscillates	0	$^{1/2}$	$-\frac{\overline{1}}{2}$	+1/2	0
u	$2.2 { m MeV}$	stable	$+^{2}/_{3}$	1/2	+1/3	$+\frac{1}{2}$	r/g/b
d	$4.7 { m MeV}$	$\mathcal{O}(10^{-8})\mathrm{s}$	-1/3	$^{1/2}$	+1/3	$-\frac{\overline{1}}{2}$	r/g/b
s	$95 { m MeV}$	$\mathcal{O}(10^{-8})\mathrm{s}$	-1/3	$^{1/2}$	+1/3	$-\frac{\overline{1}}{2}$	r/g/b
c	$1.275~{\rm GeV}$	$\mathcal{O}(10^{-12})\mathrm{s}$	$+^{2}/_{3}$	$^{1/2}$	+1/3	$+\frac{1}{2}$	r/g/b
b	$4.18 {\rm GeV}$	$\mathcal{O}(10^{-12})\mathrm{s}$	-1/3	$^{1/2}$	+1/3	$-\frac{\overline{1}}{2}$	r/g/b
t	$173~{\rm GeV}$	$\mathcal{O}(10^{-25})\mathrm{s}$	$+^{2}/_{3}$	$^{1/2}$	+1/3	$+\frac{1}{2}$	r/g/b
γ	0	stable	0	1	0	0	0
W^{\pm}	$80.4~{\rm GeV}$	$\mathcal{O}(10^{-25})\mathrm{s}$	± 1	1	0	± 1	0
Z	$91.2~{ m GeV}$	$\mathcal{O}(10^{-25})\mathrm{s}$	0	1	0	0	0
g	0	_	0	1	0	0	double $(c\bar{c})$
H	$125~{\rm GeV}$	$\mathcal{O}(10^{-22})\mathrm{s}$	0	0	+1	$-\frac{1}{2}$	0

Feynman Diagrams

Left Side: Measured at 125 GeV

Right Side: (Bare Mass) + (User Defined Scale)

Beyond the Standard Model Questions to Think About

- Is the Higgs really fundamental?
- Could there be new physics to help with quadratic divergence of Higgs mass? Why is gravity so weak? Can it be easily integrated into the SM?
- What about Dark Matter?
- Is lepton universality really true?
- Where did all the anti-matter go?

