
Johan S Bonilla 
March 8th and 10th, 2022

The Standard Model
CSU-NUPAX/CERN IRES Program





Standard Model Symmetries
 ->  U(1) × SU(2)L × SU(3) U(1)QED × SU(3)C

•  represents Electroweak symmetry 
— 4 degrees of freedom -> electroweak symmetry breaking -> 3 leftover 
— Goldstone bosons -> physical bosons 
— Higgs ‘eats’ a degree of freedom


•  represent Quantum Chromo Dynamics (QCD, aka strong force) 
— No symmetry breaking 
— Decoupled from Electroweak sector

U(1) × SU(2)L

SU(3)



Lorentz Group

• Set of all Lorentz transformations 
— Invariant physics in 4-dimensional spacetime 
— 3 degrees of freedom for rotations 
— 3 degrees of freedom for translations (boosts) 
— 3+3=6 generators of group


• SO(4): Special Ordinary Group of Rank 4  
— Happens to have 6 generators  
— Turns out SO(4)=SU(2)xSU(2) -> Left/Right-Handed 
— Useful since respects Lorentz Invariance, and lines up with evidence of 
     ‘handed-ness’ of physics (see Wu and Goldhaber experiments in 1950’s)



Writing Down a Lagrangian

• For each Gauge-Symmetry -> Field Tensor  
— SU(3) ->   (x8)  
— SU(2) ->  (x3) 
— U(1) ->  (x1)


• Total derivative involves all field tensors


• Introduce chiral (handed) fermions 
— LH: Doublets; RH: Singlets (Y==0)
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Lagrangian of the Standard Model
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No mass terms!! Everything is massless!!!!



Lagrangian of the Standard Model

No mass terms!! Everything is massless!!!!

Higgs Sector -> Leads to effective mass terms (Yukawa)



The Higgs Potential

• Where we start:                                         =>                        four generators 

• Higgs potential:  

• Minimum defines Vacuum Expectation Value  
 

• Choose representation of scalar field as



Electroweak Symmetry Breaking
Expanding the Total Derivative

We can measure VEV 
v=246 GeV
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Quantum Numbers of the Standard Model



Feynman Diagrams
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Naturalness in the Standard Model
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Left Side: Measured at 125 GeV Right Side: (Bare Mass) + (User Defined Scale)



Beyond the Standard Model
Questions to Think About

• Is the Higgs really fundamental?


• Could there be new physics to help with quadratic divergence of Higgs mass?


• Why is gravity so weak? Can it be easily integrated into the SM?


• What about Dark Matter?


• Is lepton universality really true?


• Where did all the anti-matter go?



Johan HW: Quantum Number for Quarks

• Lepton Number (Historically) 
                                             does not occur 
                                             does


• Baryon Number (Historically) 
 
 
                                                         Neither occur! People have been looking! 

• Baryon and Lepton number are accidental symmetries of the Stadard Model 
— So is B-L (motivates many GUT models)


• Baryon number is defined for quarks: +1/3 quarks, -1/3 anti-quarks



Johan HW: Electrons in Higgs Production

• Substitute t -> e/mu/tau, is it allowed? 
— Electron/muon/tau have no color 
— Gluons are electrically neutral 
— Vertex would be 0, so NO


• What is instead we had photons? 
— Yes, you can produce Higgs 
— Ultraperipheral collisions 
— Can technically make a electron loop


• Electrons can indirectly ‘interact’ with gluons 
— Via intermediary quarks


• Electron/muon colliders can be Higgs factories



Beyond the Standard Model
Some Solutions

Naturalness

Composite	Higgs

Little	H
iggs

Dark	Matter

Dark	Photons

Axion
-Like	

CDM

WIMPS

SUS
Y



Beyond the Standard Model
Some Solutions

Naturalness

Composite	Higgs

Little	H
iggs

Dark	Matter

Dark	Photons

Axion
-Like	

CDM
WIMPS

SUSY



Finding Dark Matter

•“Break”	it	(DM	annihilation)

•Backdoors	between	SM	and	Dark	sectors

•Experiment:	Space	(cold,	large)


•“Shake”	it	(DM	sensing)	

•Sensitive	to	any	interaction

•Experiment:	Pure	substance	(warm,	dense)


•“Make”	it	(DM	creation)

•Tunable	SM	initial	state

•Experiment:	LHC	and	other	colliders

Break	it
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https://www.americanscientist.org/article/going-nowhere-fast
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Experimental Signature
Pair-Produced, R-Parity Conserving stop ( ) t̃

Stable Neutralino  
(Missing Energy)

Two hadronically decaying tops
6 final state quarks (>=4 jets)

Visible!

stop pair-production

Possible Dark Matter  
Candidate!



The Top Quark: Possible Portal to New Physics
Evading Exclusions of Higgs Measurements

◦Stops can be excluded up to ~1250 GeV 
—Not the end of SUSY, not by a long shot! 
—SUSY need not conserve R-parity (long-lived)


◦Other chiral fermions (new 3rd, or 4th gen. quarks)  
— Excluded by Higgs cross-section measurements 
— Also by direct searches


◦There are other BSM models to consider: 
— The 125 GeV Higgs may not be fundamental 
— Vector-Like Quarks (T/B) not excluded by Higgs measurements 
— Can still be new high energy resonances with SM ttbar

RSG/KKG

Z’



One Analyzer’s Background is Another’s Signal
Searching for New Physics in ttbar Resonance

◦Extending the SM with additional SU(2) symmetries give 
rise to heavier analogs of EW bosons (W’/Z’) 
— Kaluza-Klein Graviton 
— Randall Sundrum Bulk Graviton


◦ttbar resonance mass used as discriminating observable 
— Pivotal aspect of search is choice of top tag
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