Neutrinos in astrophysical systems

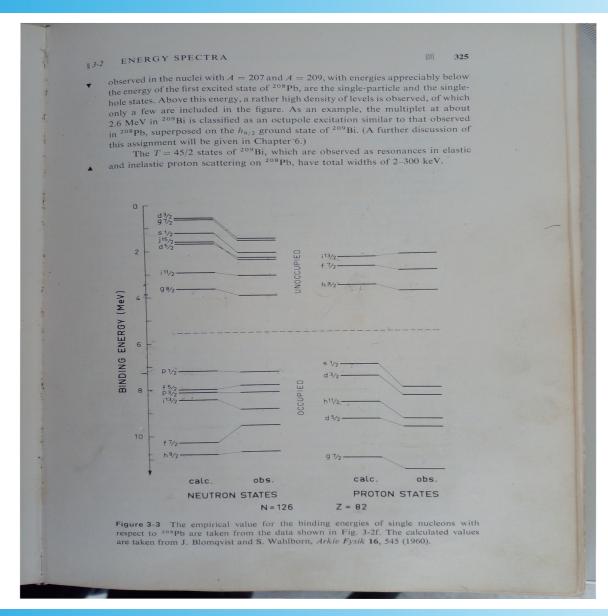
Osvaldo Civitarese Department of Physics. University of La Plata IFLP-CONICET. Argentina

Stockholm may 2022 Dedicated to Professor Jan Blomqvist

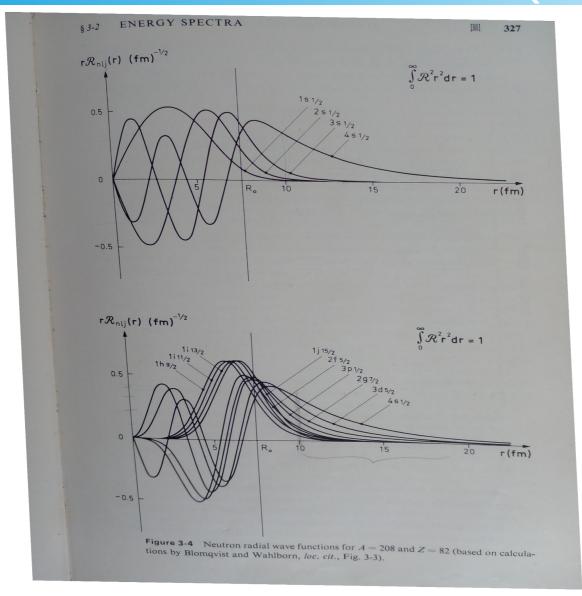
Some Forewords

- Jan Blomqvist belongs to a generation of physicist who have developed the very first notions about nuclear structure since Denmark and Sweden become, during the 1960's, the center of theoretical and experimental nuclear physics.
- Most of the ideas coming from the NBI are still around in fields so diverse as QCD and low energy nuclear phenomena.

Neutron and Proton levels in A=208



Radial Wave Functions (A=208)

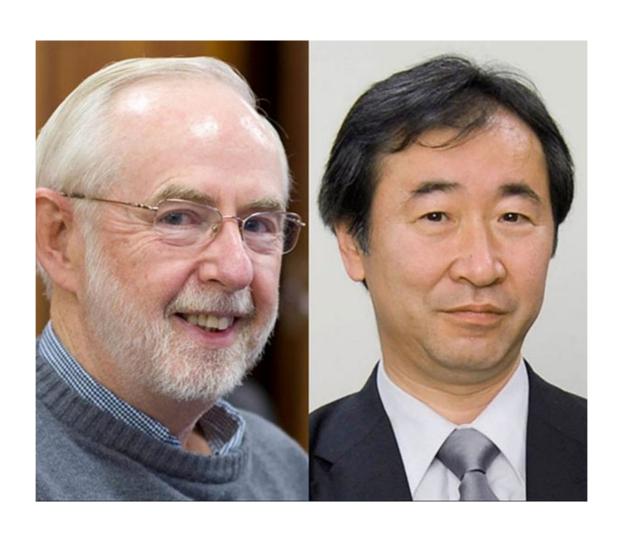


Neutrinos in astrophysics

- Flavors and masses
- Sterile neutrinos
- Interactions between neutrinos
- Neutrinos and dark matter
- Axions, neutrinos and double beta decay.
- Conclusions.

Ettore Majorana

McDonald-Kajita (Nobel 2015)



Basic notions

- 3 flavors (electron, muon, tau)
- 3 mass eigenstates (m1,m2,m3)
- 3 ordering of the masses:
 (normal, inverted, degenerate)
- Maximal breaking of symmetry
 (left handed doublets (charged leptons+antineutrinos)
 (right handed singlets (charged leptons)

Still discussing about neutrinos

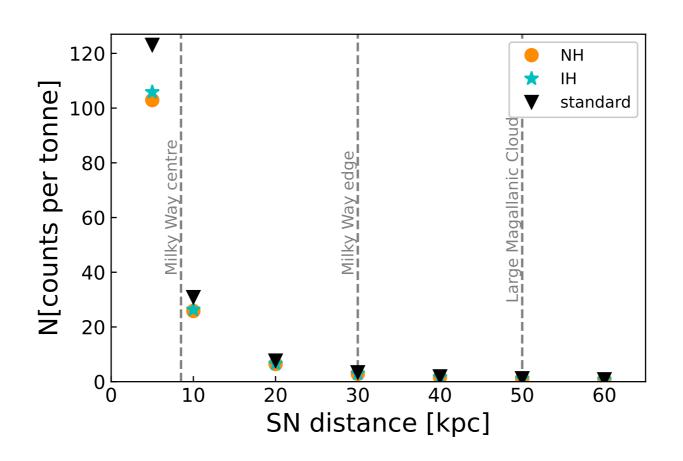
Mixing parameters (active neutrinos)

Parameter	Normal hierarchy	Inverse hierarchy
$\sin^2(\theta_{12})$	0.307	0.307
Δm_{21}^2	$7.53 \times 10^{-5} \mathrm{eV}^2$	$7.53 \times 10^{-5} \mathrm{eV^2}$
$\sin^2(\theta_{23})$	0.545	0.547
Δm_{32}^2	$2.46 \times 10^{-3} \mathrm{eV}^2$	$-2.53 \times 10^{-3} \mathrm{eV^2}$
$\sin^2(\theta_{13})$	0.0218	0.0218

Supernovae neutrinos

- Core collapse supernovae (stars with masses larger than 8 solar masses)
- 99% of the energy is transported by neutrinos (energies of the order of several MeV)
- Some reactions involving neutrinos
 electron+positron → neutrino+antineutrino
 bremsstrahlung
 (n+n->n+n+neutrino+antineutrino)

Supernovae neutrinos



SN1987A

- E=3x10**53 erg
- Luminosity and spectral flux for each neutrino flavor
- Energy distribution (Fermi, power law) for each neutrino flavor
- Mikheyev-Smirnov-Wolfenstein resonances in flavor convertion at high and low densities.

Luminosity

$$L_{\nu_{\beta}}(t) = \frac{E_{\nu}^{tot}}{18} e^{-t/3}$$

Flux (SN)

$$F^0_{\nu_\beta}(E,\,t) = \frac{L_{\nu_\beta}(t)}{4\pi D^2} \frac{f_{\nu_\beta}(E,\eta)}{\langle E_{\nu_\beta}\rangle}$$

(Fermi-Dirac)

$$f_{\nu_{\beta}}(E, \eta_{\nu_{\beta}}) = \frac{1}{1 + exp[E/T_{\nu_{\beta}} - \eta_{\nu_{\beta}}]}$$

Power law

$$f_{\nu_{\beta}}(E) = \frac{(\alpha+1)^{(\alpha+1)}}{\Gamma(\alpha+1)\langle E \rangle} \left(\frac{E}{\langle E \rangle}\right)^{\alpha} e^{-(\alpha+1)E/\langle E \rangle}$$

Flux for each flavor(3 species)

$$F_{\nu_e} = P_e F_{\nu_e}^0 + (1 - P_e) F_{\nu_x}^0 ,$$

$$F_{\bar{\nu}_e} = \bar{P}_e F_{\bar{\nu}_e}^0 + (1 - \bar{P}_e) F_{\bar{\nu}_x}^0 ,$$

$$F_{\nu_x} = (1 - P_e) F_{\nu_e}^0 + (1 + P_e) F_{\nu_x}^0 ,$$

$$F_{\bar{\nu}_x} = (1 - \bar{P}_e) F_{\bar{\nu}_e}^0 + (1 + \bar{P}_e) F_{\bar{\nu}_x}^0 ,$$

Fluxes (3+1)

$$\begin{split} F_{\nu_e} &= \Theta_e^e F_{\nu_e}^0 + \Theta_e^x F_{\nu_x}^0 + \Theta_e^s F_{\nu_s}^0 \ , \\ F_{\bar{\nu}_e} &= \Xi_e^e F_{\bar{\nu}_e}^0 + \Xi_e^x F_{\bar{\nu}_x}^0 + \Xi_e^s F_{\bar{\nu}_s}^0 \ , \\ F_{\nu_x} &= \left(\Theta_\mu^e + \Theta_\tau^e\right) F_{\nu_e}^0 + \left(\Theta_\mu^x + \Theta_\tau^x\right) F_{\nu_x}^0 \\ &\quad + \left(\Theta_\mu^s + \Theta_\tau^s\right) F_{\nu_s}^0 \ , \\ F_{\bar{\nu}_x} &= \left(\Xi_\mu^e + \Xi_\tau^e\right) F_{\bar{\nu}_e}^0 + \left(\Xi_\mu^s + \Xi_\tau^s\right) F_{\bar{\nu}_x}^0 \\ &\quad + \left(\Xi_\mu^s + \Xi_\tau^s\right) F_{\bar{\nu}_s}^0 \ , \\ F_{\nu_s} &= \Theta_s^e F_{\nu_e}^0 + \Theta_s^x F_{\nu_x}^0 + \Theta_s^s F_{\nu_s}^0 \ , \\ F_{\bar{\nu}_s} &= \Xi_s^e F_{\bar{\nu}_e}^0 + \Xi_s^x F_{\bar{\nu}_x}^0 + \Xi_s^s F_{\bar{\nu}_s}^0 \ , \end{split}$$

The mixing factors (3+1,normal)

$$\Theta_{\alpha}^{e} = |U_{\alpha 1}|^{2} P_{H} P_{L} (1 - P_{S}) + |U_{\alpha 3}|^{2} P_{S}
+ |U_{\alpha 2}|^{2} P_{H} (1 - P_{L}) (1 - P_{S})
+ |U_{\alpha 4}|^{2} (1 - P_{S}) (1 - P_{H}) ,$$

$$\Theta_{\alpha}^{x} = |U_{\alpha 1}|^{2} (1 - P_{H} P_{L}) + |U_{\alpha 2}|^{2} (1 - P_{H} + P_{H} P_{L})
+ |U_{\alpha 4}|^{2} P_{H},$$

$$\Theta_{\alpha}^{s} = |U_{\alpha 1}|^{2} P_{S} P_{H} P_{L} + |U_{\alpha 2}|^{2} P_{S} P_{H} (1 - P_{L}) ,$$

$$+ |U_{\alpha 3}|^{2} (1 - P_{S}) + |U_{\alpha 4}|^{2} P_{S} (1 - P_{H}) ,$$

$$\Xi_{\alpha}^{e} = |U_{\alpha 1}|^{2} ,$$

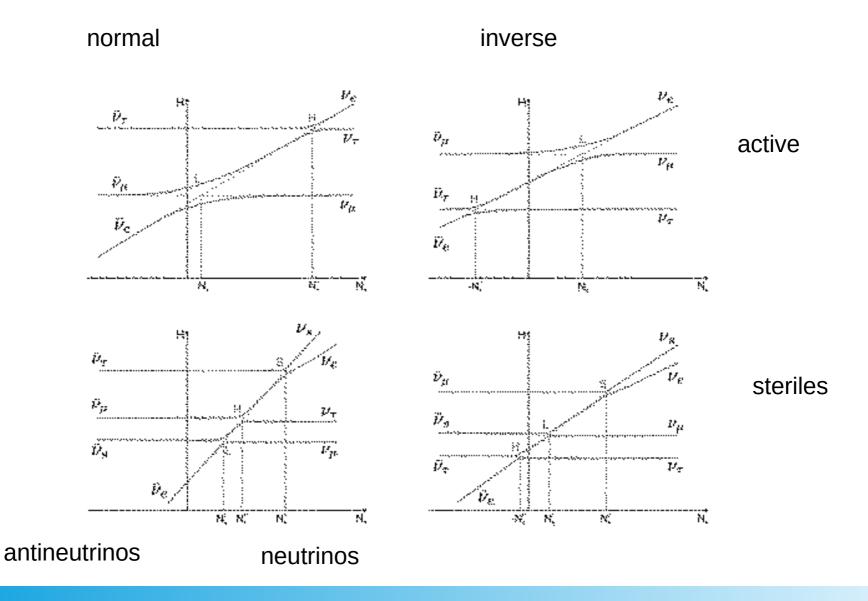
$$\Xi_{\alpha}^{x} = |U_{\alpha 2}|^{2} + |U_{\alpha 3}|^{2} ,$$

$$\Xi_{\alpha}^{s} = |U_{\alpha 4}|^{2} .$$

Mixing factors (3+1 inverse)

$$\Theta_{\alpha}^{e} = |U_{\alpha 1}|^{2} P_{L} (1 - P_{S}) + |U_{\alpha 2}|^{2} P_{S}
+ |U_{\alpha 4}|^{2} (1 - P_{S}) (1 - P_{L}) ,
\Theta_{\alpha}^{x} = |U_{\alpha 1}|^{2} (1 - P_{L}) + |U_{\alpha 3}|^{2} + |U_{\alpha 4}|^{2} P_{L} ,
\Theta_{\alpha}^{s} = |U_{\alpha 1}|^{2} P_{S} P_{L} + |U_{\alpha 2}|^{2} (1 - P_{S})
+ |U_{\alpha 4}|^{2} P_{S} (1 - P_{L}) ,
\Xi_{\alpha}^{e} = |U_{\alpha 2}|^{2} \bar{P}_{H} + |U_{\alpha 3}|^{2} (1 - \bar{P}_{H}) ,
\Xi_{\alpha}^{x} = |U_{\alpha 1}|^{2} + |U_{\alpha 2}|^{2} (1 - \bar{P}_{H}) + |U_{\alpha 3}|^{2} \bar{P}_{H} ,
\Xi_{\alpha}^{s} = |U_{\alpha 4}|^{2} .$$

Resonances MSW



Some comments about MSW

- The avoided crossing points are strongly dependent on both the hierarchy and the inclusion of sterile neutrinos.
- Neutrino resonances are more sensitive to sterile neutrinos than the resonances for antineutrinos
- The inverse hierarchy is more sensible to the inclusion of sterile neutrinos.

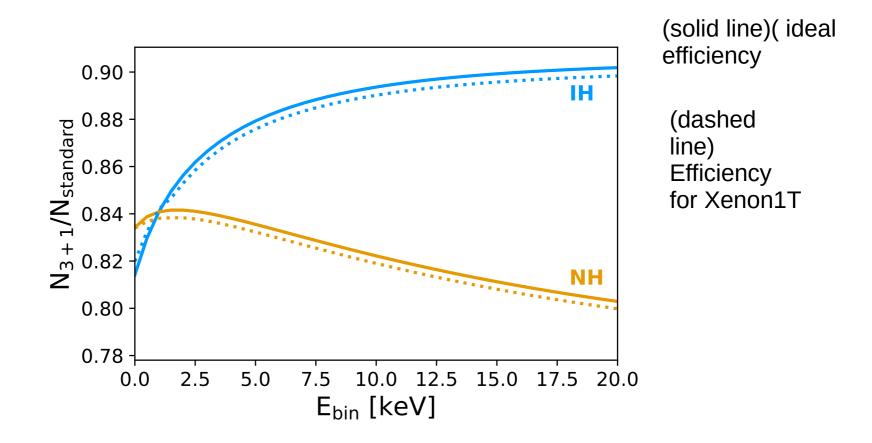
Counts at the mean value of E

Distribution function	no/osc.	NH	IH
PL	760	803	901
FD0	786	830	930
FD1	920	930	952
FD2	856	886	952

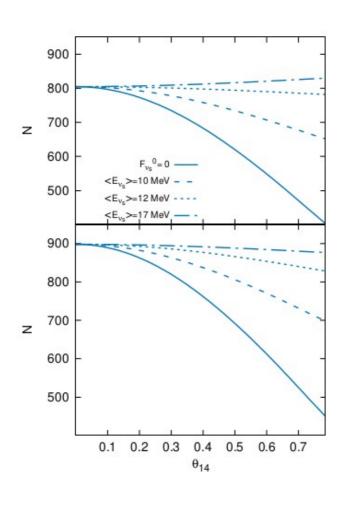
Best fit (theta14)

Hierarchy	$F_{\nu_s}^0$	$\langle E_{\nu_s} \rangle$	$\theta_{14} \pm \sigma$	$\frac{\Delta \chi^2}{N-1}$
NH	0		0.044 ± 0.021	1.32
		$10 \mathrm{MeV}$	0.032 ± 0.016	1.32
	$\neq 0$	12 MeV	0.033 ± 0.015	1.32
		$17~{ m MeV}$	0.044 ± 0.025	1.30
IH	0	_	0.016 ± 0.009	1.32
		$10 \mathrm{MeV}$	0.016 ± 0.009	1.37
	$\neq 0$	12 MeV	0.016 ± 0.009	1.32
		$17 \mathrm{MeV}$	0.016 ± 0.010	1.37

Number of events



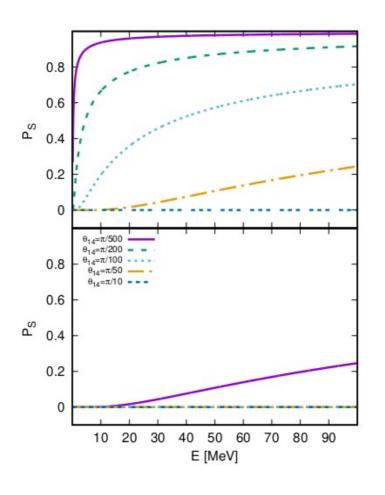
Number of events (+ sterile)



normal

invertida

S resonance (as function of θ 14)



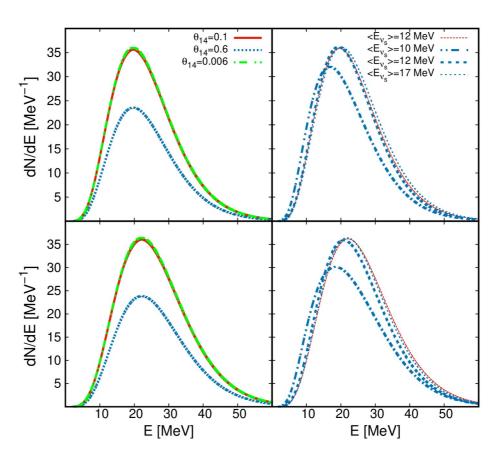
m14**2=10**(-3)eV**2

m14**2=1ev**2

Number of events

Without sterile neutrinos in the SN

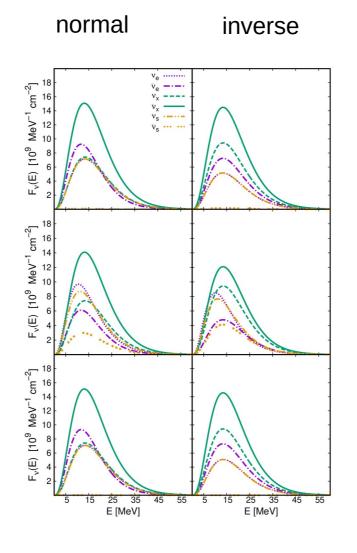
With sterile neutrinos in the SN



inverse

Events at the detector

No esteriles in SN



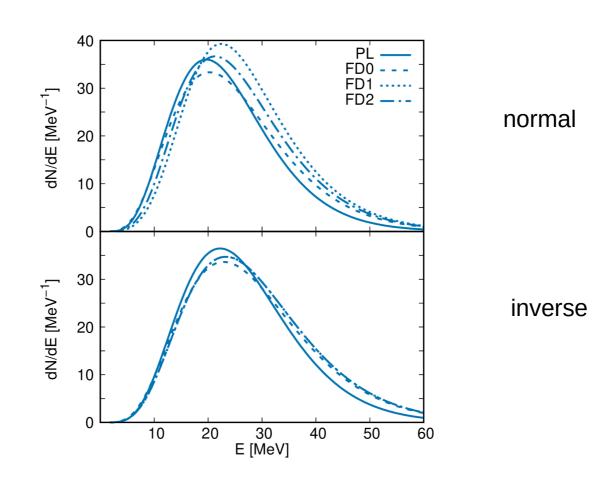
Theta14=0.1

Theta14=0.6

Theta14=0.006

Energy distributions

Active neutrinos only



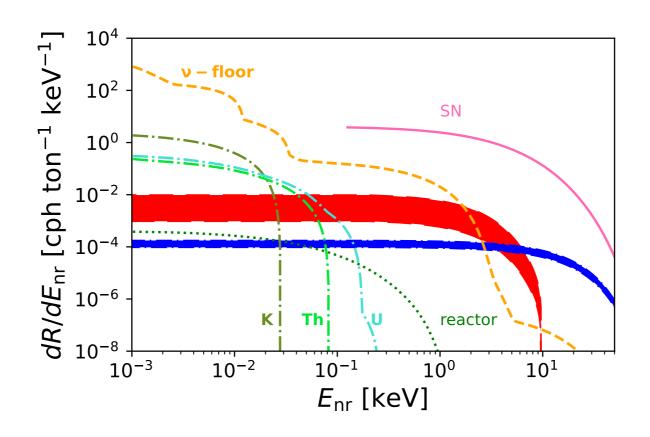
Some comments (up to now)

- Detectors like Gallex,Sage,SuperKamiokande,MiniBooNE, Kamland,Borexino,LSND may show evidences about new neutrino species
- Neutrino fluxes from SuperNovae are sensitive to sterile neutrino species.
- For values of (Δ m14**2) of the order of 1 eV**2 the probabilities ceased to be adiabatic..

Propagation of neutrinos in DM

- Present evidences about DM: (acceleration of the expansion of the Universe, no-newtonian behavior of the rotational curves of galaxies) are consistent with 5% of visible matter, 25% of dark matter and 70% of dark energy.
- DM candidates: fermionic (neutral y and cold) wimps...
- The study of the interactions with neutrinos may be a source of information about DM.

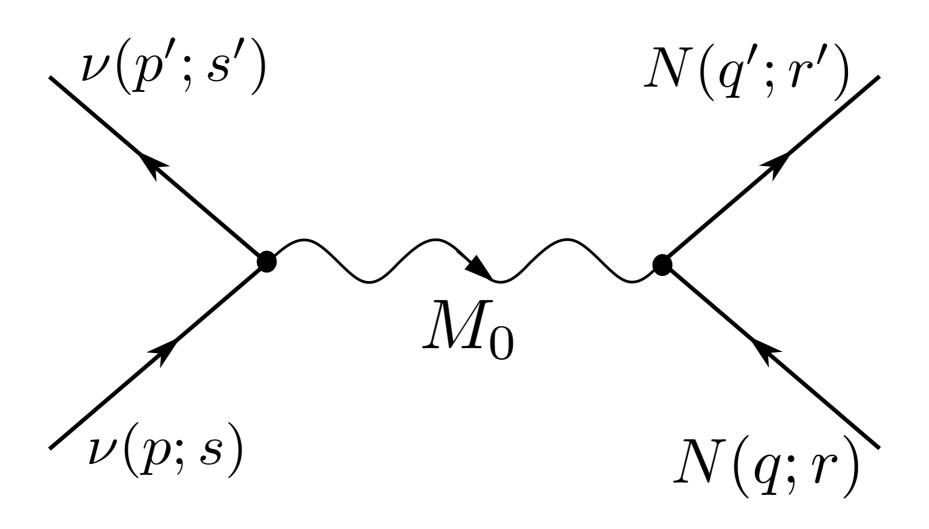
Neutrino sources



Some typical values

- DM mass (200 GeV)
- Intermediate bosons (1TeV)
- Neutrino sources (SuperNovae, GRBs)
- Neutrino energies (up to 150 MeV)
- Detectors: like Xenon1Ton

Basic diagram



Propagator

$$\frac{-g^{\mu\nu} + k^{\mu}k^{\nu}/M_0^2}{k^2 - M_0^2},$$

Lagrangian

$$\mathcal{L} = \mathcal{L}_n + \mathcal{L}_{DM} + \mathcal{L}_{int}$$

Neutrinos (Dirac)

$$\mathcal{L}_{n,Dirac} = \bar{\nu}(i\gamma^{\mu}\partial_{\mu} - m)\nu$$

Neutrinos(Majorana)

$$\mathcal{L}_{n,Majorana} = \frac{1}{2} \left[\bar{\nu}^c (i\gamma^\mu \partial_\mu) \nu^c + \bar{\nu} (i\gamma^\mu \partial_\mu) \nu - (\bar{\nu} m \nu^c + \bar{\nu}^c m \nu) \right]$$

DM velocity distributions

Distribution	$f(\mathbf{v})$			
SHM	$f(\mathbf{v}) = \begin{cases} \frac{1}{N} \left(\frac{3}{2\pi\sigma_v^2}\right)^{3/2} \exp\left(-\frac{3\mathbf{v}^2}{2\sigma_v^2}\right) & \text{if } \mathbf{v} < v_{esc} \\ 0 & \text{if } \mathbf{v} > v_{esc} \end{cases}$			
Smooth SHM	$f(\mathbf{v}) = \begin{cases} \frac{1}{N} \left(\frac{3}{2\pi\sigma_v^2} \right)^{3/2} \left(\exp\left(-\frac{3\mathbf{v}^2}{2\sigma_v^2} \right) - \exp\left(-\frac{3v_{esc}^2}{2\sigma_v^2} \right) \right) & \text{if } \mathbf{v} < v_{esc} \\ 0 & \text{if } \mathbf{v} > v_{esc} \end{cases}$			
Tsallis	$f(\mathbf{v}) = \frac{1}{N} \left[1 - (1 - q_0) \frac{\mathbf{v}^2}{v_0^2} \right]^{q_0/(1 - q_0)}$			

S matrix

$$\hat{S} = e^{-iHt} = I - i \int d^4x \,\hat{\mathcal{H}}_{int}(x)$$
$$- \int \int d^4x \,d^4x' \hat{\mathcal{H}}_{int}(x) \hat{\mathcal{H}}_{int}(x') - \dots$$

Amplitudes

$$\mathcal{A}_{i\to f}^{(1)} = \langle i|\mathrm{T}\left\{(-i)\int d^4x \hat{\mathcal{H}}_{int}(x)\right\}|f\rangle.$$

Amplitudes

$$\begin{split} A_{i\to f}^{(1)} &= -ig \int d^4x \, \langle f|(\bar{\nu}\gamma^\mu\nu) \left(\frac{g_{\mu\nu}}{M_0^2}\right) (\bar{N}\gamma^\nu N)|i\rangle \\ &= \frac{-ig}{M_0^2} \int d^4x \frac{1}{\sqrt{V}} \, e^{iq'^\nu x_\nu} \, \bar{u}(p',s') \, e^{ip'^\nu x_\nu} \gamma^\mu \frac{1}{\sqrt{V}} \, e^{-iq^\nu x_\nu} \, u(p,s) \, e^{-ip^\nu x_\nu} \\ &\quad \frac{1}{\sqrt{V}} \mathcal{N}' \, \bar{U}(q',r') \, \gamma_\mu \, \frac{1}{\sqrt{V}} \mathcal{N} \, U(q,r) \\ &= -\frac{ig_{eff} \mathcal{N} \mathcal{N}'}{V^2} \int d^4x \, e^{-i(p+q-p'-q')^\nu x_\nu} \, \times \\ &\quad \bar{u}(p',s') \gamma^\mu u(p,s) \bar{U}(q',r') \gamma_\mu \, U(q,r) \end{split}$$

Matrix element v-DM

$$\begin{split} |\mathcal{M}|^2 &= [\bar{u}(p',s')\gamma^{\nu}u(p,s)\bar{U}(q',r')\gamma_{\nu}\,U(q,r)]^{\dagger}[\bar{u}(p',s')\gamma^{\mu}u(p,s)\bar{U}(q',r')\gamma_{\mu}\,U(q,r)] \\ &= \bar{u}(p',s')\gamma^{\nu}u(p,s)[\bar{u}(p',s')\gamma^{\mu}u(p,s)]^{\dagger}\bar{U}(q',r')\gamma_{\mu}\,U(q,r)[\bar{U}(q',r')\gamma_{\nu}\,U(q,r)]^{\dagger} \\ &= \bar{u}(p',s')\gamma^{\nu}u(p,s)\bar{u}(p,s)\gamma^{\mu}\,\bar{u}(p',s')\bar{U}(q',r')\gamma_{\mu}\,U(q,r)\bar{U}(q,r)\gamma_{\nu}\,U(q',r'). \end{split}$$

Separability of the matrix v-DM

$$\sum_{spins} |\mathcal{M}|^2 = \text{Tr}[(\not p' + m)\gamma^{\nu}(\not p + m)\gamma^{\mu}] \, \text{Tr}[(\not q' + M)\gamma_{\mu}(\not q + M)\gamma_{\nu}]$$

$$= \text{Tr}[p'_{\alpha}\gamma^{\alpha}\gamma^{\nu}p_{\beta}\gamma^{\beta}\gamma^{\mu} + m^2\gamma^{\nu}\gamma^{\mu}] \, \text{Tr}[q'^{\alpha}\gamma_{\alpha}\gamma_{\mu}q^{\beta}\gamma_{\beta}\gamma^{\nu} + M^2\gamma_{\mu}\gamma_{\nu}]$$

Interaction v.-DM

$$\frac{1}{4} \sum_{spins} |\mathcal{M}|^2 = 8 \left[(p' \cdot q')(p \cdot q) + (p' \cdot q)(p \cdot q') - m^2(q \cdot q') - M^2(p' \cdot p) + 2m^2 M^2 \right]$$

Cross section

$$d\sigma = \frac{1}{|\vec{v}|} \frac{1}{2E_p} \frac{1}{2E_p} \frac{1}{2E_q} \frac{d^3p'}{2E_{p'}(2\pi)^3} \frac{d^3q'}{2E_{q'}(2\pi)^3} \left| \mathcal{A}_{i \to f}^{(1)} \right|^2$$

Cross section

$$d\sigma = \frac{g_{eff}^{2}}{8\pi^{2}} \frac{1}{p} \frac{1}{M} \frac{d^{3}q'}{E_{q'}} \frac{d^{3}p'}{p'} \delta^{(4)} \left(p' + q' - p - q \right)$$

$$\times \left[(p' \cdot q')(p \cdot q) + (p' \cdot q)(p \cdot q') - M^{2}(p' \cdot p) \right]$$

$$= \frac{g_{eff}^{2}}{8\pi^{2}} \frac{1}{p} \frac{1}{M} \frac{d^{3}q'}{E_{q'}} \frac{d^{3}p'}{p'} \delta^{4} \left(p' + q' - p - q \right)$$

$$\times \left[\left(p'E_{q'} - \mathbf{p}' \cdot \mathbf{q}' \right) pM + p'M \left(pE'_{q} - \mathbf{p} \cdot \mathbf{q}' \right) - M^{2} \left(pp' - \mathbf{p} \cdot \mathbf{p}' \right) \right]$$

Dispersion in no-local media

$$\frac{d\sigma}{d\Omega dp'} = \frac{g_{eff}^2}{8\pi^2} p'^2 \left[1 - \frac{M - (|\mathbf{p}| - p')}{E_{q'}} \cos \theta \right]$$

Local velocity distribution

$$\frac{d\sigma}{d\Omega dp'} = \frac{g_{eff}^2}{8\pi^2} p'^2 \left[1 - \frac{M - (|\mathbf{p}| - p')}{E_{q'}} \cos\theta \right] \mathcal{N}(v) \exp\left(-\frac{3(|\mathbf{p}|^2 + p'^2 - 2|\mathbf{p}|p'\cos\theta)}{2\sigma_q^2} \right)$$

Truncated local distribution

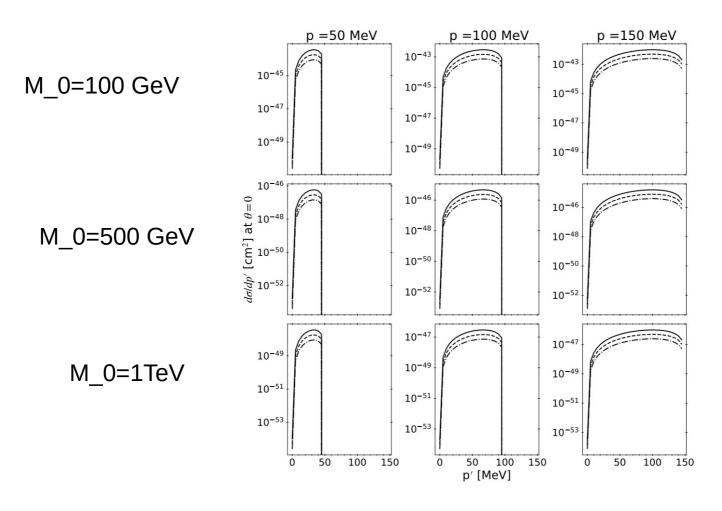
$$\frac{d\sigma}{d\Omega dp'} = \frac{g_{eff}^2}{8\pi^2} p'^2 \left[1 - \frac{M - (|\mathbf{p}| - p')}{E_{q'}} \cos \theta \right] \mathcal{N}(v)
\times \left[\exp\left(-\frac{3(|\mathbf{p}|^2 + p'^2 - 2|\mathbf{p}|p'\cos\theta)}{2\sigma_q^2} \right) - \exp\left(-\frac{3q_{esc}^2}{2\sigma_q^2} \right) \right]$$

Tsallis

$$\frac{d\sigma}{d\Omega dp'} = \frac{g_{eff}^2}{8\pi^2} \frac{1}{N} p'^2 \left[1 - \frac{M - (|\mathbf{p}| - p')}{E_{q'}} \cos \theta \right] \left[1 - (1 - q_0) \frac{|\mathbf{p} - \mathbf{p}'|^2}{M^2 v_0^2} \right]^{q_0/(1 - q_0)}$$

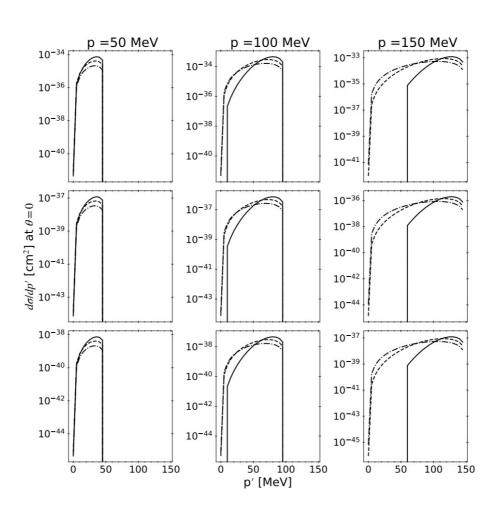
Distribution SHM (Standard halo)

Cross section at 0 degree

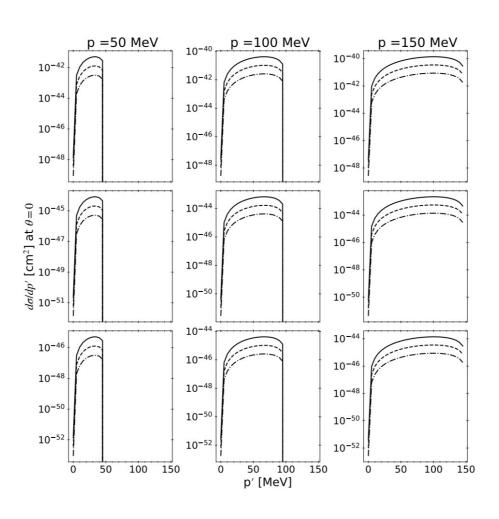


M(DM)=50,100,200 GeV

(SHM truncated)



Tsallis



Neutrinos and dark matter

$$\mathcal{L}_{int} = ig_a \bar{\psi} \gamma^{\mu} \gamma^5 \psi \partial_{\mu} \Phi$$

Peccei y Quinn scalar boson (axion)

Peccei-Quinn

Axion potential

$$V(\Phi) = -\frac{\mu^2}{2}(|\Phi|^2 - \frac{1}{f_a^2}|\Phi|^4).$$

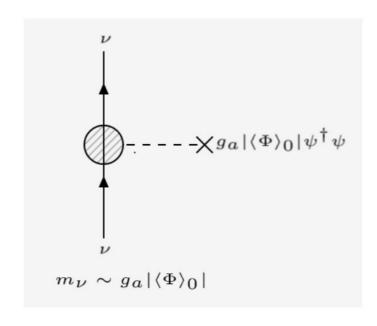
Effective Hamiltonian

$$\mathcal{H}_{int} \approx g_a |\langle \Phi \rangle_0 | \psi^{\dagger} \psi + g_a \vec{\nabla} \Phi(\vec{x}, t) \cdot \vec{S}.$$

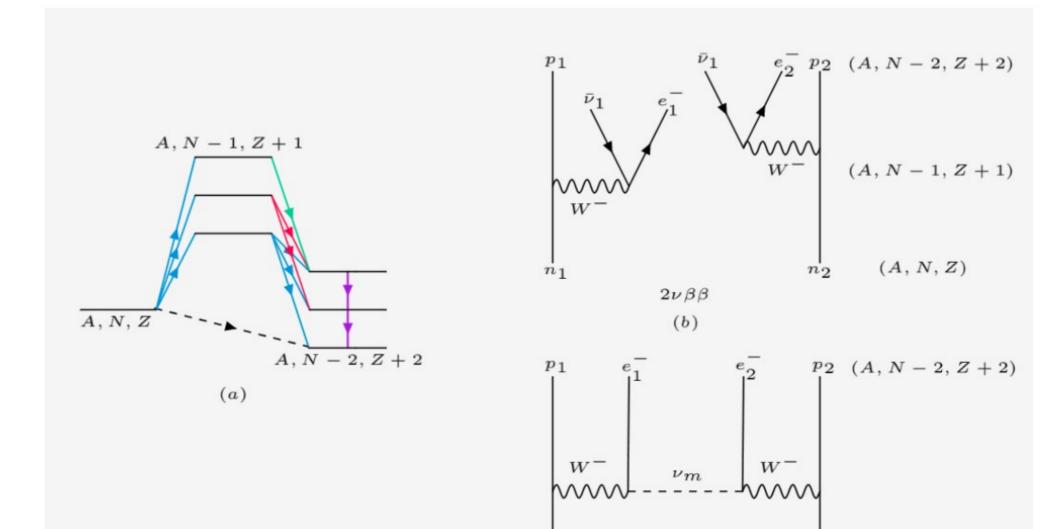
Neutrino mass

$$m_{\nu} \to g_a |\langle \Phi \rangle_0|$$

Neutrino mass insertion



About the double beta decay



(A, N, Z)

 n_2

0νββ

Half life $(0v\beta \beta decay)$

$$[t_{1/2}^{(0\nu)}]^{-1} = C_{mm}^{(0)} \left(\frac{\langle m_{\nu} \rangle}{m_e}\right)^2 + C_{m\lambda}^{(0)} \langle \lambda \rangle \left(\frac{\langle m_{\nu} \rangle}{m_e}\right) + C_{m\eta}^{(0)} \langle \eta \rangle \left(\frac{\langle m_{\nu} \rangle}{m_e}\right) + C_{\lambda\lambda}^{(0)} \langle \lambda \rangle^2 + C_{\eta\eta}^{(0)} \langle \eta \rangle^2 + C_{\lambda\eta}^{(0)} \langle \lambda \rangle \langle \eta \rangle,$$

Mass sector

$$\langle m_{\nu} \rangle = \frac{m_e}{\sqrt{t_{1/2}^{(0\nu)} C_{mm}^{(0)}}}.$$

Mass of the axion

$$m_a \approx \frac{6}{f_a/[10^6 \text{GeV}]} \text{eV}$$

Mass of the neutrino

$$m_{\nu} = g_a \frac{f_a}{\sqrt{2}},$$

mass(axion)/mass(neutrino)

		$g_a/\sqrt{2}$	
$m_a/6 \text{ [eV]}$	$f_a[\mathrm{GeV}]$	$\langle m_{\nu} \rangle = 0.1 \text{ eV}$	$\langle m_{\nu} \rangle = 0.01 \text{ eV}$
10^{-10}	10^{16}	10^{-26}	10^{-27}
10^{-9}	10^{15}	10^{-25}	10^{-26}
10^{-8}	10^{14}	10^{-24}	10^{-25}
10^{-7}	10^{13}	10^{-23}	10^{-24}
10^{-6}	10^{12}	10^{-22}	10^{-23}
10^{-5}	10^{11}	10^{-21}	10^{-22}
10^{-4}	10^{10}	10^{-20}	10^{-21}
10^{-3}	10^{9}	10^{-19}	10^{-20}
10^{-2}	10^{8}	10^{-18}	10^{-19}
10^{-1}	10^{7}	10^{-17}	10^{-18}

Conclusions

- Neutrinos are a key component in the description of phenomena in a wide range of energies.
- More than 3 species may be needed to explain astrophysical systems and reactions.
- The interaction of neutrinos with dark matter may reveal significant information about the composition and distribution of it.

Conclusiones

- Peccei y Quinn postulate, related to the axion mass, could be applied to the generation of the neutrino mass.
- Majorana postulate about neutrinos may be confirmed from the relation existing between double beta decay and axions.
- Modelling axions may change the current view about the existence and composition of dark matter.

Some references

- 1807.03690.pdf 1808.03249.pdf
- 1809.01063.pdf 1904.04355.pdf
- 1904.07202.pdf 1904.07212.pdf
- 2109.06244.pdf 2110.09478.pdf
- 2202.03887.pdf

Finally (thanks God!)

- Muchas gracias!!
- Tak so mycket!
- Kiitos palios!
- Mange tak!
- Bol'shoye spasibo!