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Motivation: Importance of proton structure for nuclear physics

The proton used as a probe in nuclear physics, so important to know its structure.

In calculations of e.g. cross sections for neutrino-nucleus scattering it is needed the
electromagnetic and weak form factors of the nucleons.

The nuclear force is a remnant of the strong force (described by QCD) between quarks and
gluons, i.e. knowledge about the properties of the QCD at low energy is important to
understand the nuclear force from first principles.
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Introduction

In hadron physics, one important but difficult remaining challenge is to describe the
dynamics and structure of the proton in terms of its basic constituents (quarks and gluons).
The structure of a hadron (e.g. a proton, pion, etc) in momentum space can be studied
through various physical quantities, e.g.

Electromagnetic form factors
The parton distribution function (PDF). I.e., the probability distribution for a quark to have a given
fraction x of the total longitudinal momentum P+ = P0 + P3.
Transverse momentum distributions, giving also dependence on the transverse momentum of the
quark.

As will be explained in the following, the above quantities and others can be accessed
through the so-called proton light-front wave function, which is the analog of the wave
function in NR QM.
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Light-front dynamics

Dynamical system is characterized by ten fundamental quantities, i.e. energy, momentum,
angular momentum and boosts.

Convential form (instant form): dynamical variables refer to physical conditions at some
instant time, e.g. x0 = 0. But, as pointed out by Dirac, other choices are possible. In the
Light-front (LF) dynamics refer to conditions on a front x+ = t + z = 0. So, commutation
relations defined at equal LF time (x+ = 0).

LF variables: x± = t± z and similarly for the momenta.

After integration over relative momentum k− and putting x+ = 0, the four-dimensional space
reduced to a three-dimensional one (k+,~k⊥).
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Light-front Dynamics (LFD) turns out to be convenient for description of, in particular, relativistic
bound states:

It allows a Fock space expansion of a state vector in terms of contribution with well-defined
particle-number. For example, for a three-body system:

|p〉 = |n = 3〉+ |n = 4〉+ ... (1)

where each term has an associated boost-invariant wave function Ψn with probability

Pn =

{
n

∏
i=1

∫ d2ki⊥
(2π)2

∫ 1

0
dxi

}
δ

(
1−

n

∑
i=1

xi

)
δ

(
n

∑
i=1

~ki⊥

)
|Ψn(x1,~k1⊥, x2,~k2⊥, ...)|2 (2)

In Eq. (1), the leading contribution is referred to as valence component.

Using the Fock space expansion one can derive a Schroedinger like equation of the form
(P⊥ = 0)

HLC|Ψ〉 = M2|Ψ〉, HLC = P+P−, (3)

with P+ diagonal and P− a functional. But, in practice Fock-expansion has to be truncated to
finite order.
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General goals

In the long-term perspective, to create a fully dynamical model for the proton in Minkowski
space.

It will then give direct access to observables defined on the so-called light-front hyperplane.

As a first step, Fock basis truncated to valence order, i.e. proton is uud, and spin
degree-of-freedom not included.

Quark-diquark model with dynamical diquark in s-wave channel interacting through contact
interaction between two of the quarks. In that sense it is an effective low-energy model.

The proton structure will be explored through momentum distribution and its so-called
Ioffe-time representation of the wave function.

E. Ydrefors (IMP, China) Proton LF 7 / 26



Three-body model
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Three spinless particles of mass m. Spectator + pair of interacting particles. Factor of two due
to symmetry of wave function with respect to exchange of the particles.

In the present work a zero-range interaction with four-leg-vertex iλ used. Then, for the
two-body amplitude (see figure)

iF (M2
12)) = iλ + (iλ)2B + (iλ)3B2 + ... =

1
(iλ)−1 −B(M2

12)
(4)

with the bubble diagram

B(M2
12) =

∫ d4k
(2π)4

i
(k2 −m2 + iε)

i
[(k− P)2 −m2 + iε]

(5)

where M2
12 = P2 with P total four-momentum of two-body system.
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However, the integral entering definition of B logarithmic divergent. We reguralize and
renormalize the two-body scattering amplitude by fixing the scattering length at the
continuum threshold

1
16πm

F (4m2) = −a, (6)

giving

F (M2
12) =

1
i[B(4m2)−B(M2

12)]−
1

16πma
. (7)

For a > 0 it is equivalent to fixing a two-body mass M2 (pole of scattering amplitude) where

a =
πy′M2

2m arctan(y′M2
)

, y′M2
=

M2√
4m2 −M2

2

. (8)
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Three-body Faddeev-Bethe-Salpeter equation with zero interaction

We consider the case of three spinless bosons of equal mass. The structure contained in the
so-called Bethe-Salpeter amplitude given by

iΦ(q1, q2, q3) = i3
v(q1) + v(q2) + v(q3)

(q2
1 −m2 + iε)(q2

2 −m2 + iε)(q2
3 −m2 + iε)

. (9)

Here v(q) obey the Faddeev-Bethe-Salpeter (FBS) equation [1]:

v(q) = 2iF (M2
12)
∫ d4k

(2π)4
i

k2 −m2 + iε
i

(p− q− k)2 −m2 + iε
v(k) (10)

A pole fixed in F (M2
12), corresponding either to a two-body bound (a > 0) or virtual (a < 0)

state, where a denotes the scattering length

F (M2
12), where M2

12 = (p− q)2, given by

F (M2
12) =

Θ(−M2
12)

1
16π2y

log 1+y
1−y −

1
16πma

+
Θ(M2

12)Θ(4m2 −M2
12)

1
8π2y′

arctan y′ − 1
16πma

+
Θ(M2

12 − 4m2)
y′′

16π2 log 1+y′′
1−y′′ −

1
16πma −

iy′′
16π

, (11)

The FBS equation was recently solved including the infinite number of Fock components in
Euclidean [2] and Minkowski [3] space.

[1] T. Frederico, PLB 282 (1992) 409
[2] E. Ydrefors et al, PLB 770 (2017) 131

[3] E. Ydrefors et al, PLB 791 (2019) 276
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Valence LF equation

After the LF projection, i.e. introducing k± = k0 ± kz and integrating over k−, one obtains the
valence three-body LF equation [1, 2]:

Γ(x, k⊥) =
F (M2

12)

(2π)3

∫ 1−x

0

dx′

x′(1− x− x′)

∫ ∞

0

d2k′⊥
M2

0 −M2
N

Λ(M2
0)Γ(x

′ , k′⊥) (12)

with the squared free three-body mass

M2
0 = (k′2⊥ + m2)/x′ + (k2

⊥ + m2)/x + ((k′⊥ + k⊥)2 + m2)/(1− x− x′) (13)

Form factor introduced via subtraction, i.e.

[M2
0−M2

N ]
−1− [M2

0 + µ2]−1 = Λ(M2
0)[M

2
0−M2

N ]
−1 → Λ(M2

0) = [M2
0 + µ2]−1[MN + µ2], (14)

where µ is a cut-off mass.
The form factor eliminates the unphysical ground state, with M2

N < 0, and also lead to an
infrared enhancement. Essentially, it removes contributions corresponding to high momenta
↔ short distances.
The three-body valence LF wave function is given by

Ψ3(x1,~k1⊥, x2,~k2⊥, x3,~k3⊥) =
Γ(x1,~k1⊥) + Γ(x2,~k2⊥) + Γ(x3,~k3⊥)√

x1x2x3(M2
N −M2

0(x1,~k1⊥, x2,~k2⊥, x3,~k3⊥))
, (15)

where due to momentum conservation: x3 = 1− x1 − x2 and~k3⊥ = −~k1⊥ −~k2⊥.
[1] J. Carbonell and V.A. Karmanov, PRC 67 (2003) 037001

[2] T. Frederico, PLB 282 (1992) 409
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As studied in PLB 770 (2017) 131, for Λ = 1, it exists a lower-lying unphysical solution with
M2

N < 0. This is the relativistic analog of the well-known Thomas collapse. But, contrary to
the non-relativistic case the unphysical state has a finite energy, due to a short-range
repulsion of purely relativistic origin.

Difference between valence LF result and full BS solution, due to a contribution coming from
an infinite number of diagrams involving anti-particles, which can be interpreted as an
effective three-body force of relativistic origin.
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Electromagnetic form factor

The valence contribution to the Dirac form factor is obtained from the matrix element of γ+.
In the frame q+ = 0 and q2 = −Q2 = −q2

⊥ it is given by

F1(Q2) =

{
3

∏
i=1

∫ d2ki⊥
(2π)2

∫ 1

0
dxi

}
δ

(
1−

3

∑
i=1

xi

)
δ

(
3

∑
i=1

~kf
i⊥

)
Ψ†

3(x1,~kf
1⊥, ...)Ψ3(x1,~ki

1⊥, ...),

(16)
where Q2 =~q⊥ ·~q⊥ and the magnitudes of the momenta read∣∣∣~kf(i)

i⊥

∣∣∣2 =
∣∣∣~ki⊥ ±

~q⊥
2

xi

∣∣∣2 =~k2
i⊥ +

Q2

4
x2

i ±~ki⊥ ·~q⊥xi (i = 1, 2), (17)

and ∣∣∣~kf(i)
3⊥

∣∣∣2 =
∣∣∣±~q⊥

2
(x3 − 1)−~k1⊥ −~k2⊥

∣∣∣2 =

(1− x3)
2 Q2

4
± (1− x3)~q⊥ · (~k1⊥ +~k2⊥) + (~k1⊥ +~k2⊥)

2.
(18)
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Fit exp. data, Z. Ye et al

a = 2.7/m, m = 366 MeV, mu = 1.0 m

a = 3.5/m, m = 352 MeV, mu = 2.0 m

a = 5.0/m, m = 343 MeV, mu = 3.0 m

a = 9.0/m, m = 335 MeV, mu = 4.0 m

In figure Q2F(Q2) for different values of a and µ compared with fit to exp. data by Z. Ye et al
[1].

Best agreement obtained for a ≈ 1.46 fm and µ = m = 366 MeV, and this parameters will be
used in the following.

Fair agreement with exp. data for Q2 < 5 GeV2 but for larger values of Q2 they deviate,
presumably due to lack of a finite-range interaction.

Z. Ye et al, PLB 777 (2018) 8.
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Results for the vertex function
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The proton structure contained in the vertex function Γ(x, k⊥). Concentrated at small k⊥ and
x ∼ 1/3.
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Parton distribution function at model scale
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The single parton distribution function (PDF), is the integrand of the form factor at Q2 = 0,
i.e.

f1(x1) =
1

(2π)6

∫ 1−x1

0
dx2

∫
d2k1⊥d2k2⊥ |Ψ3(x1,~k1⊥ , x2,~k2⊥ , x3,~k3⊥)|2 = I11 + I22 + I33 + I12 + I13 + I23.

(19)
with the Faddeev contributions

Iii =
1

(2π)6

∫ 1−x1

0
dx2

∫
d2k1⊥d2k2⊥

Γ2(xi,~ki⊥)

x1x2x3(M2
N −M2

0(x1,~k1⊥ , x2,~k2⊥ , x3,~k3⊥))2

Iij =
2

(2π)6

∫ 1−x1

0
dx2

∫
d2k1⊥d2k2⊥

Γ(xi,~ki⊥)Γ(xj,~kj⊥)

x1x2x3(M2
N −M2

0(x1,~k1⊥ , x2,~k2⊥ , x3,~k3⊥))2
; i 6= j.

(20)

The PDF at model scale is peaked around x = 1/3 and quite narrow. None of the Faddeev
contributions are negligble.
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Emperical access to the PDF

Information about the proton PDF can be obtained from e.g. deep inelastic scattering

e + p −→ e + X, (21)

where X is undetected.

The differential cross section is of the form

dσ

dxdQ2 ∼ ∑
i=q,g

∫ 1

x

dz
z

Ci(z, Q2)fi/p(x/z, Q2), (22)

with the sum running over active quark flavors and gluon and fi/p the corresponding PDF.
The coefficient functions Ci is obtained from perturbative QCD.
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PDF evolution

For the comparison with other frameworks and/or experimental data the PDF should be
evolved from the model scale to a higher scale.

This is done by using the DGLAP equation

dq
d log Q2 =

αs(Q2)

2π

∫ 1

x
P(x/y, αs(Q)2)q(y, Q2) (23)

We will use the effective coupling (EPJC 80 (2020) 1064):

αs(k2) =
γmπ

log[K2(k2)/Λ2
QCD]

, K2(y) = (a2
0 + a1y + y2)/(b0 + y) (24)

The initial scale is given by the hadron scale Q0 = 0.330± 0.03 GeV.
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Proton PDF at Q = 3.097 GeV
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Colored areas: Computed u and d-quark xpdfs at Q = 3.097 GeV with the areas
corresponding to the uncertainty in initial scale Q0 = 0.330± 0.03 GeV.
Dash-dotted lines: Results from quark-diquark by Y. Lu et al [1]. Reasonable agreement.
Disagreement at large x probably due to the use of contact interaction in our model.
Dashed-lines: Basis Light-front Quantization (BLFQ) [1] but evolved using same framework
as in this work. Only good agreement for small x.
Dotted lines: Results from the NNPDF 4.0 global fit. None of the models agree well with
these results.
A few remarks:

Model of this work and the one by Y. Lu et al, are both quark-diquark models, but the latter one has
also axial-vector diquark and a more realistic quark-quark interaction.
The BLFQ which is a Hamiltonian approach include (at least effectively) confinement, which is
lacking in the two other models.

[1] arXiv:2203.00753 [hep-th], [2] PRD 104, 094036 (2021), [3] arXiv:2109.02653 [hep-ph]
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Distribution amplitude
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The distribution amplitude is defined as

φ(x1, x2) =
∫

d2k1⊥d2k2⊥Ψ3(x1,~k1⊥, x2,~k2⊥, x3,~k3⊥). (25)

It shows the dependence of the wave function on the momentum fractions for the case when
the quarks share the same position.

Triangular shape due to x1 + x2 ≤ 1. Distribution centered around x1 = x2 = 1/3 but quite
wide.
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Ioffe-time image of the valence state

Alternatively, the proton can be studied in coordinate space, in terms of the transverse
position (~bi⊥) and the Ioffe-time x̃i = b−i p+. The image of the proton is then obtained through
the Fourier transform of the proton LF wave function.

For simplicity, we consider here the case~b1⊥ =~b2⊥ =~0⊥, and then one has

Φ(x̃1, x̃2) ≡ Ψ̃3(x̃1,~0⊥, x̃2,~0⊥) =
∫ 1

0
dx1 eix̃1 x1

∫ 1−x1

0
dx2 eix̃2 x2 φ(x1, x2) , (26)
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For x̃1 >= 10 a rather dramatic decrease of the amplitude is seen.

An exponential damping is seen with respect to the relative distance in Ioffe-time between
the two quarks. We expect this damping to be even more significant if confinement is
incorporated, as its more effective at large distances.
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The valence double parton distribution function (DPDF) is given by

D3(x1, x2;~η⊥) =
1

(2π)6

∫
d2k1⊥d2k2⊥

×Ψ†
3(x1,~k1⊥ +~η⊥ ; x2,~k2⊥ −~η⊥ ; x3,~k3⊥)Ψ3(x1,~k1⊥ ; x2,~k2⊥ ; x3,~k3⊥).

(27)

Fourier transform of D3(x1, x2,~η⊥) in ~η⊥ gives the probability of finding the quarks 1 and 2
with momentum fractions x1 and x2 at a relative distance~y⊥ within the proton.

In the figure is shown results for η⊥ = 0, showing a distribution centered around
x1 = x2 = 1/3.
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Transverse momentum densities
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The single quark transverse momentum density in the forward limit and integrated in the
longitudinal momentum is associated with the probability density to find a quark with
momentum k⊥.
It can be computed as:

L1(k1⊥) =
k1⊥
(2π)6

∫ 1

0
dx1

∫ 1−x1

0
dx2

∫ 2π

0
dθ1

∫
d2k2⊥|ψ3(x1,~k1⊥, x2,~k2⊥, x3,~k3⊥)|2. (28)

Two-quark one:

L2(k1⊥, k2⊥) =
k1⊥k2⊥
(2π)6

∫ 1

0
dx1

∫ 1−x1

0
dx2

∫ 2π

0
dθ1

∫ 2π

0
dθ2|ψ3(x1,~k1⊥, x2,~k2⊥, x3,~k3⊥)|2.

(29)
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Work in progress: Going beyond the valence order

The three-body FBS equation with zero-range interaction, including the infinite number of
Fock components, was solved by direct integration in Minkowski space in Ref. [1]. However,
the solution was quite difficult from numerical point of view.

However, like in the two-body case, the Nakanishi integral representation be used for vertex
function:

v(q; p) =
∫ 2/3

−4/3
dz
∫ ∞

0

dγg(γ, z)
γ− k2 − (p · q)z− iε

(30)

For the two-body scattering amplitude

F (M2
12) =

∫ ∞

4m2
dγ

ρ(γ)

M2
12 − γ + iε

(31)

with the spectral function

ρ(γ) = − θ(s− 4m2)

16π2
y′′(

y′′

16π2 log 1+y′′
1−y′′ −

1
16πma

)2
+
(

y′′
16π

)2 (32)

Construction of the integral equation for g(γ, z) and its solution is under development.

Observables could then be computed including all the infinite number of Fock components.

[1] E. Ydrefors et al, PLB 791 (2019) 276
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Conclusions

We have, in this work, studied the proton in a simple but fully dynamical valence LF model
based on a zero-range interaction.

The model is based on the concept of a strongly interacting scalar diquark.

We have studied the structure of the proton by computing the LF wave function in its
Ioffe-time representation and also momentum distributions.

However, the model is rather crude since e.g. the spin degree of freedom hasn’t been
included yet. But is a first step towards studying the proton directly in Minkowski space.
Future plans:

Generalization to the infinite set of Fock components (The Faddeev-Bethe-Salpeter equation solved in
PLB 791 (2019) 276)
Implementation of a more realistic interaction (gluon exchange)
Inclusion of spin degree of freedom
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