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In 1940's, the shell structure was excluded/abandoned
for atomic nuclei by many physicists.

Densely packed, but #
their motion is chaotic, neutron
i.e., no stable orbital motion.

This is the "standard” picture of atomic nuclei in 1940's
led by the idea of Niels Bohr inspired by fission etc.



In 1949, Maria Goeppert Mayer and Hans Jensen
independently proposed magic numbers and shell model.

Protons and neutrons form an atomic nucleus confining
themselves by a mean potential, U, created by the same
protons and neutrons.

The mean potential produces single-

particle orbits as eigen solutions of the atomic nucleus
single-particle motion in the potential.
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The shell model meant, in the context of Mayer-Jensen,
an Independent Particle Model (IPM) with the Harmonic
Oscillator Potential.

Based on this shell structure, the shell model has been
evolved to many-body physics with full of correlations
originating in nuclear forces, up to so-called ab /nitio
calculations.

From the achievements and trends brought in by enormous
efforts of many shell-modelists, some concepts seem to
have emerged or to be emerging.

Let me overview some of them, with certain my
contributions, in this talk.



The contributions of Prof. Jan Blomqvist to the shell
model studies ... such as

Atomic masses above'4°Gd derived from a shell model
analysis of high spin states

Jan Blomquvist, Peter Kleinheinz & Patrick J. Daly

Zeitschrift fiir Physik A Atoms and Nuclei 312, 27-41 (1983) | Cite this article
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Abstract

From a shell model analysis of high-spin states in neutron deficient nuclei above'4°Gd we have
derived the ground state masses of theN=82 and 83 isotones of Eu, Tb, Dy, Ho, and Er. The
results can be used to calculate the energies of aligned multiparticle yrast configurations. They
also link ten a-decay chains to the nuclei with known masses, providing many new absolute
mass values which are compared with predictions. An examination of the two-proton

separation energies atN=82 shows an 0.5 MeV break in the nuclear mass surface atZ=64.

The break at Z=64 means a lot in recent shell-model
studies of deformed shapes, prolate or triaxial,
differentiating Z<64 (e.g. Sm) and Z>64 (e.g. Er) nuclei.
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Shell evolution due to the monopole interaction
Type II shell evolution and shape coexistence

Triaxiality dominance in heavy nuclei as a consequence of the
self-organization due to the monopole-quadrupole interplay
<> traditional prolate dominance picture

New neutron dripline mechanism due to the monopole-quadrupole
interplay, exemplified for F, Ne, Na and Mg isotopes
besides the traditional mechanism with single-particle nature

Fully ab initio calculations clarify alpha clustering
ground and Hoyle states of ?C (not included in the above paper)
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shell structure
for neutrons
in Ni isotopes
(f7, fully occupied)
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Excitation energy of the lowest excited 2* state
for even-even nuclei
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Bohr-model calc. by HFB with Gogny force,
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T-plot : visualization of MCSM eigenvector on Potential Energy Surface

eigenstate ¥ = Y ¢; P[J™
24

stochastically deformed Slater determinant
- intrinsic shape

amplitude

ﬁrojec‘rion onto J*

* PES is calculated
by CHF for the shell-model
Hamiltonian
* Location of circle : quadrupole
deformation of unprojected
MCSM basis vectors
 Area of circle :
overlap probability
between each
projected basis and
eigen wave function

=

P i
B
™
S
~o

160 -
140 -
120
100 -

80

60 -

spherical

-292.1

y O+1 state of Ni | B0

N
N

-294.1

-295.1

1-296.1

5 -297.1

1-298.1

1-299.1

-300.1

Y. Tsunoda, et al.
PRC 89, 031301 (R) (2014)



Qz (fm2 )

Qz (fmZ )

Evolution of shapes in Ni isotopes
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Shape coexistence with a lowest excitation energy
Physics Letters B 765 (2017) 328-333
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interplay, exemplified for F, Ne, Na and Mg isotopes
besides the traditional mechanism with single-particle nature

Fully ab initio calculations clarify alpha clustering
ground and Hoyle states of *C (not included in the above paper)




Y. Téunoda
- Effective interaction:
G-matrix* + VMU
* Brown, PRL 85, 5300 (2000)

Nucleons are excited fully
within this model space
(no truncation)

We performed Monte Carlo Shell
Model (MCSM) calculations, where
the largest case corresponds to the
diagonalization of 3.9 x 10 3!
dimension matrix.
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Underlying Structure of Collective Bands and Self-Organization in Quantum Systems

T. Otsuka®,"**" Y. Tsunoda,* T. Abe®,* N. Shimizu,* and P. Van Duppen®’
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What are those side bands ?

1
triaxial states
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Question to Gamma-vibration picture by Aage Bohr

MCSM result
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Self organization

Single-Particle Energies on top of the inert core : disorder

Effective Single-Particle energies optimized (or tailored) to
the eigenstate of interest by the monopole interaction : order

- This optimization is not perfect but yields sizable effects.

- The quadrupole interaction : mode driving force
The monopole interaction : resistance control force
The SPE generally works against any particular collective mode.

The collective rotational bands of heavy nuclei seem to show triaxiality
in virtually all nuclei, in ground and/or side bands, in contrast to the
traditional picture of axial symmetry + vibration (a la Aage Bohr).

This monopole-quadrupole interplay seems to be important also to
the neutron driplines.

Two major phases: Sm-like and Er-like separated by Z=64 gap



Single-particle states vs. collective modes : an old and still open question
Are they simply competing each other ?

Atomic nucleus is a guantum The shape of atomic nucleus
Fermi liguid : can be described by the
The nucleus is composed deformation of the "vase’,
of almost free nucleons <—p ala Nilsson mode/(next page).
interacting weakly via

a

resiaual forces Landau

in a (solid) (mean) potential open
like a solid "vase” question

7/

A. Bohr Mottelson Nilsson

T. Schaefer, Fermi Liquid theory: A brief
survey in memory of Gerald E. Brown, NPA 2014) G.E. Brown

One of Gerry’s main scientific pursuits was to understand the nuclear few and many-body
problem in terms of microscopic theories based on the measured two and three-nucleon forces.
One of the challenges of this program is to understand how the observed single-particle aspects
of finite nuclei, in particular shell structure and the presence of |excited levels which carry the
quantum numbers of single particle states, can be reconciled with the strong nucleon-nucleon
force, and how single particle states can coexist with collective modes. A natural framework for
addressing these questions is the Landau theory of Fermi liquids. Landau Fermi liquid theory
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The impact of nuclear shape on the emergence of
the neutron dripline
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.. See next page



Decomposition of the Hamiltonian
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Two driving forces: example from Mg isotopes

—200

0 d. Contribution of rest — F
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Neutron niumber
TO
not bound

Energy

monopole part

~6 MeV / neutron

~3 MeV / neutron

_50 .

—100 1

still substanti

\Q\\\
~150+ ’
| Mg 42Mg
8 12 16 20 24 28 32
N

The rest (mainly deformation
energy) part is saturated at
N=24,

The monopole effects
compensate it, and pushes
the dripline away

(dashed arrows).



Dripline of F isotopes

0 a. Contribution of rest — F ® Ex mm Coulomb  mm pairing
(quadrupole efc) interaction —— Ne P bare SPE t
;. — Na — total are o 1ES
. — Mg == monopole (quadn
Z
= 0
g ~20 i
2 m————————f D
% dripline T =30
=301 .- monopole displacement 0*mg 1 a F
01820222426283032 -100 ~ 16 2001

Neutron number Neutron number

Monopole effect (edge of green part) becomes weaker for N > 16 in F
isotopes. It even decreases because of high-lying d3/2 (see gray edge).

If there were no "rest” (~ quadrupole deformation) effect (red part),
the dripline would be at N = 16, which is the same as oxygen isotopes.

Loose binding phenomena may be seen (?), in contrast to Ne, Na or Mg.



Dripline mechanisms
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Suzuki, O, Yuan & Alahari,
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Review

Emerging Concepts in Nuclear Structure Based on the
Shell Model

Takaharu Otsuka 23

Shell evolution due to the monopole interaction
Type II shell evolution and shape coexistence

Triaxiality dominance in heavy nuclei as a consequence of the
self-organization due to the monopole-quadrupole interplay
<> traditional prolate dominance picture

New neutron dripline mechanism due to the monopole-quadrupole
interplay, exemplified for F, Ne, Na and Mg isotopes
besides the traditional mechanism with single-particle nature

Fully ab initio calculations clarify alpha clustering
ground and Hoyle states of 12C (not included in the above paper)




Energy level & transition strength of 12C

ab initio no-core MCSM + Daejeon 16 interaction (Shirokov et al.)
based on chiral EFT (Machleidt-Entem, 2011)

charges protons le
neutrons Oe

correlation effects are explicitly treated

(no medium correction needed)

- Hoyle state 120
10 -
s |
S | M(EO) B(E2)
> 5 - =5.29 (14) =13.5(1.4)
o | ot Q=6 (3)
L _
i B(E2)
i =7.63 (19)
o oF
exp

(0¥

M(EO)

th

Strong deformation (,~0.6, oblate) in the 0*, and 2*,
states can now be described from first principles.

convergence pattern as

functlons of energy variance
-70 ]

Energy (MeV)

0 400 800 1200
Energy variance (MeVz)

Stringent test for the Daejeon 16 interaction and the present No-Core MCSM.



Nucleon densities in the body-fixed frame

after proper orthogonalization

; 4 12 + +
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From 8Be to '°C, and the crossover in the ground & Hoyle states of 1°C

mm clustering
< m quantum liquid 61% 33°/o
GJ —
=10 % Hoyle state | 9.8 MeVV/z
> O 25-T.. |75 MeV
(@))
0 O 1532 mixing | g Mev/
LLI
o] EE— N @ - w U
Ground state e >
3 12 6°/o 94% o
Hoyle state Be C alpha clustering quantum liquid

The mixing occurs also due to the orthogonality to the ground state.

The mixing pushes the Hoyle state upwards by ~3 MeV (repulsive effect).

Ground state :
the mixing matrix element is ~ -3 MeV (attractive effect) with 6%
(ampl. ~ 0.24) alpha clustering. —>alpha decay, alpha knockout



Main features

Nuclear forces favor both quantum liquid and alpha cluster
with different binding energies

Transition between them 1s not a phase transition but a crossover
(no mtermediate situation, but they can mix as components)

Alpha cluster emerges without threshold effect (& —>Ikeda diagram)
Hoyle state ~ 2/3 triangular clusters + 1/3 quantum liquid.

What 1s crucial 1s probably shorter range parts of nuclear forces,
which has been "uninvited guest” to nuclear structure physics

:L\Qk/\
13,2234 (2022) open access

a-Clustering in atomic nuclei from first principles
with statistical learning and the Hoyle state

CharaCter T. Otsuka 1'2'3m, T. Abe 2'4, T. Yoshida®®, Y. Tsunoda® 4, N. Shimizu®#, N. Itagaki6, Y. Utsuno 3'4,
J. Vary® 7, P. Maris® 7 & H. Ueno?




Summary

The emerging concepts include

- shell evolution in exotic nuclei described by the monopole
interaction,

- shape coexistence due to type IT shell evolution clarified
by T-plot,

- self-organization in shape deformation and prevailing
triaxiality,

- new dripline mechanism.

The monopole-quadrupole interplay is a common key.

- alpha clustering has recently been clarified by fully ab
initio calculations. It may be in well-bound state
(cf, alpha decay); crossover features;
importance of almost bare NN interaction
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