
Best wishes to Professor Jan Blomqvist for a happy and healthy 90th birthday!

Frontiers in Nuclear Structure Theory (KTH, Stockholm, May 23-25, 2022)

Mirror symmetry breaking in nuclei near driplines

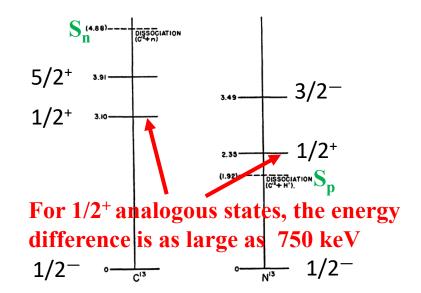
Furong Xu

Peking University, Beijing

- I. Thomas-Ehrman shift
- II. Ab initio calculations of nuclei around driplines

Mirror symmetry and breaking

III. Conclusions


The Symposium on "Frontiers in Nuclear Structure Theory", KTH, Stockholm, May 23-25, 2022

I. Thomas-Ehrman shift

NN interaction isospin independent

Spectra mirror symmetry

An Analysis of the Energy Levels of the Mirror Nuclei, C¹³ and N¹³

R. G. Thomas*

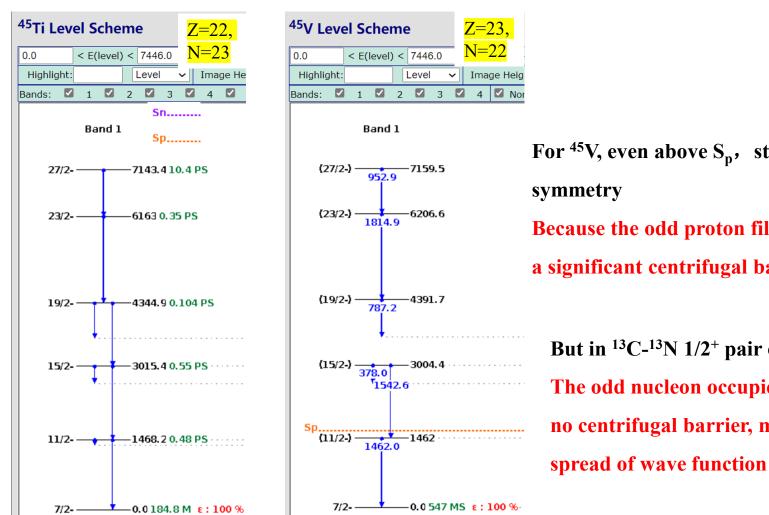
Kellogg Radiation Laboratory, California Institue of Technology, Pasadena, California

R.G. Thomas, Phys. Rev. 80, 136 (1950)

PHYSICAL REVIEW

VOLUME 81. NUMBER 3

FEBRUARY 1, 1951


On the Displacement of Corresponding Energy Levels of C13 and N13

JOACHIM B. EHRMAN*
Princeton University, Princeton, New Jersey

If states have different asymptotes of their wave functions

- different Coulomb energies of the states
- > different excitation energies
- ➤ Mirror symmetry breaking in spectrum, called the Thomas-Ehrman shift

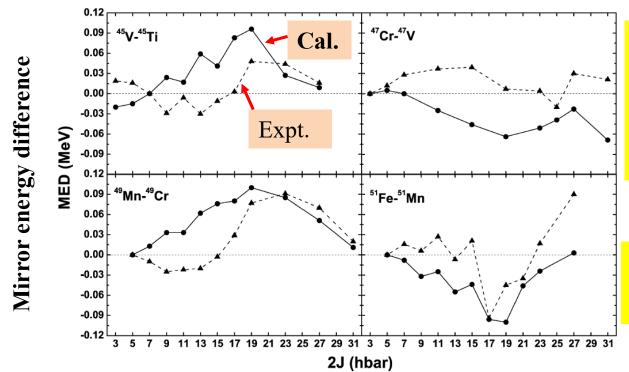
But for most of mirror partners, low-lying levels in spectra are mirror symmetric

For 45 V, even above S_p , still good mirror

Because the odd proton fills in $0f_{7/2}$ (l=3), a significant centrifugal barrier

But in ${}^{13}\text{C}-{}^{13}\text{N}$ 1/2+ pair of mirrors, The odd nucleon occupies $1s_{1/2}$ (l=0), no centrifugal barrier, more spatial

Nuclear Physics A 814 (2008) 48-65


Isospin asymmetry effects in mirror nuclei with modern charge-dependent *NN* potential

2008: CD-Bonn SM

C. Qi a, F.R. Xu a,b,*

^a School of Physics, and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China

62 C. Qi, F.R. Xu / Nuclear Physics A 814 (2008) 48–65

Good mirror symmetry

between analogous states

MED < 100 keV;

In contrast to ¹³C-¹³N: 750 keV.

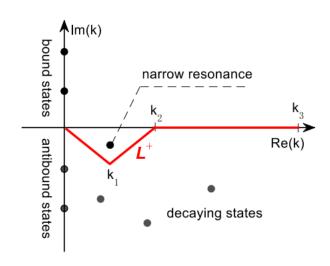
Here MEDs mainly from

CIB and **CSB**

II. Ab initio calculations of nuclei around driplines

Mirror symmetry and breaking

We need a method which can give a good description of the asymptote of wave function in space.


Ab initio Gamow shell model

- 1) Chiral $N^3LO(NN) + N^2LO(NNN)$
- 2) Resonance + continuum

The outline of the calculation:

1. Chiral $N^3LO(NN) + N^2LO(NNN)$

2. Perform Gamow Hartree-Fock (GHF), which provides the Berggren (Gamow) basis: bound, resonance and continuum states.

Complex-k GHF Hamiltonian:

$$\langle k | h | k' \rangle = \frac{\hbar^2 k^2}{2\mu} \delta(k - k') + \sum_{\alpha \beta} \langle \alpha | U | \beta \rangle \langle k | \alpha \rangle \langle \beta | k' \rangle$$

A brief introduction of the Berggren (Gamow) basis

Static Schrodinger Equation

$$\psi({m r},t)=e^{-iEt/\hbar} \varphi_E({m r})$$

$$[-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r})]\varphi_E(\mathbf{r}) = E\varphi_E(\mathbf{r})$$
 in the space

But for a state above the particle-emission threshold, which is NOT a static state, one should solve a time-dependent Schrodinger equation!

Time-dependent Schrödinger equation (general)

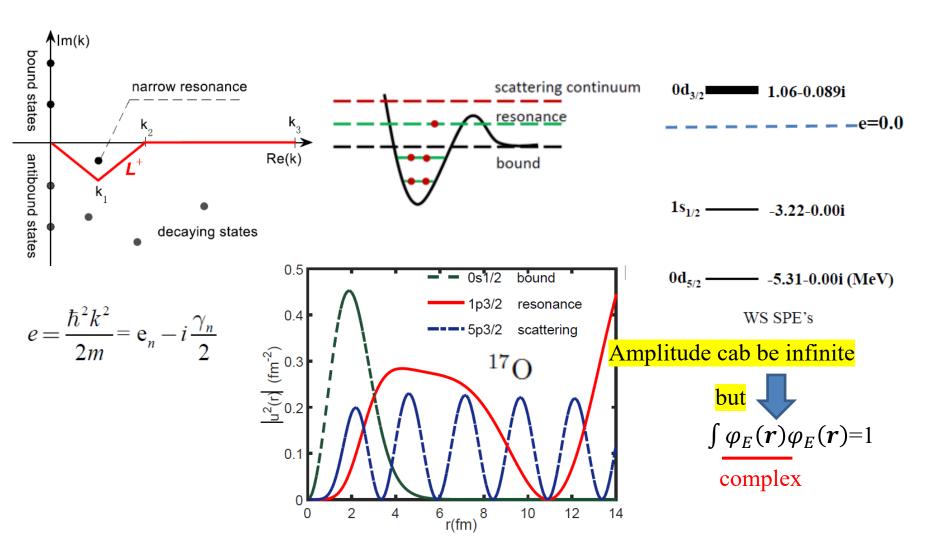
$$i\hbarrac{d}{dt}|\Psi(t)
angle=\hat{H}|\Psi(t)
angle$$

In 60s Berggren suggested an approximation to solve the time-

dependent Schrodinger equation:

$$\psi(\mathbf{r},t)=e^{-iEt/\hbar}\varphi_E(\mathbf{r})$$

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r})\right]\varphi_E(\mathbf{r}) = \mathbf{E}\varphi_E(\mathbf{r})$$


But E can be complex, and $\int \varphi_E(\mathbf{r}) \varphi_E(\mathbf{r}) = 1$

The eigenvalue:
$$E = E_R - i\frac{\Gamma}{2}$$

$$\psi(\mathbf{r},t)=e^{-iEt/\hbar}\varphi_E(\mathbf{r})=e^{-iE_Rt/\hbar}\varphi_E(\mathbf{r})e^{-\Gamma t/2\hbar}$$

$$T_{1/2} = \hbar \ln 2/\Gamma$$

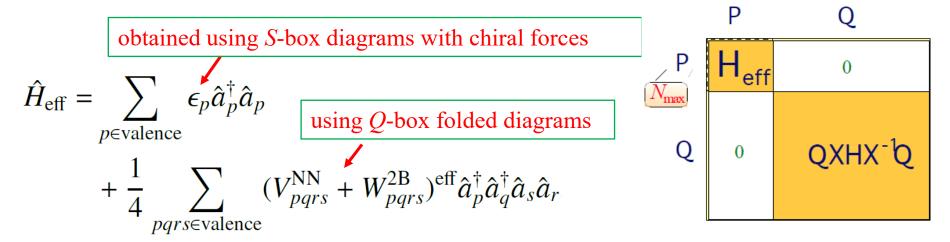
Berggren (Gamow) complex-k space: bound, resonance and continuum

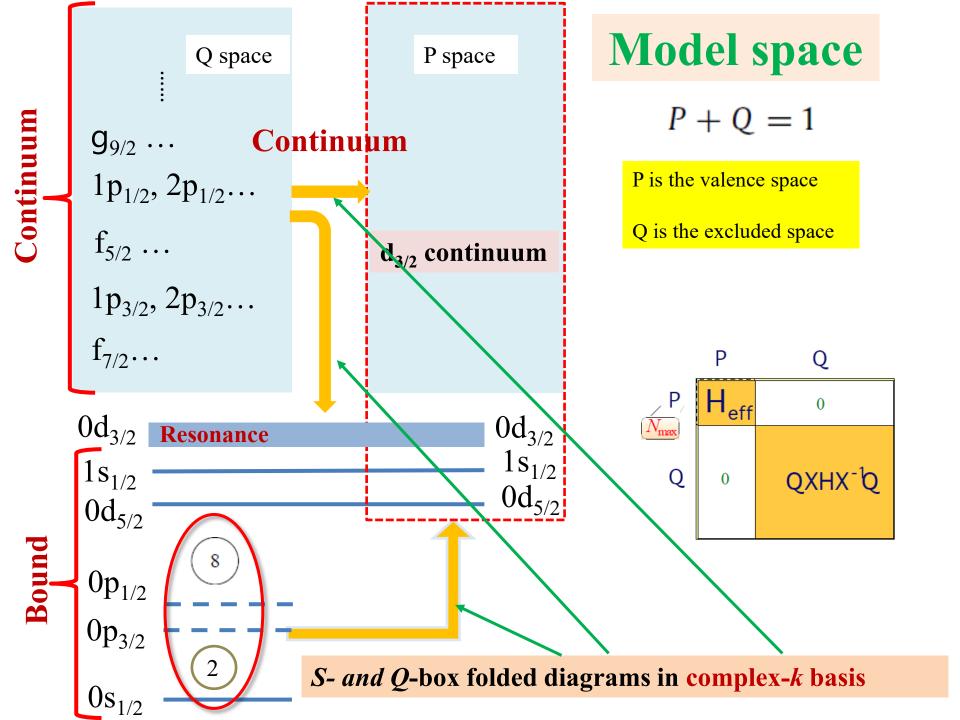
3. Interaction matrix elements are transferred to the complex-k Gamow (Berggren) basis

$$\langle ab|V|cd\rangle = \sum_{\alpha\leqslant\beta}^{N_{\rm shell}} \sum_{\gamma\leqslant\delta}^{N_{\rm shell}} \langle ab|\alpha\beta\rangle\langle\alpha\beta|V_{{\rm low-}k}|\gamma\delta\rangle\langle\gamma\delta|cd\rangle \qquad \text{In full space}$$

4. Establish a realistic effective Hamiltonian for many-body GSM with a core

Intrinsic Hamiltonian of A-nucleon system


In full space


$$H = \sum_{i=1}^{A} \left(1 - \frac{1}{A} \right) \frac{\mathbf{p}_{i}^{2}}{2m} + \sum_{i < j}^{A} \left(v_{ij}^{NN} - \frac{\mathbf{p}_{i} \cdot \mathbf{p}_{j}}{mA} \right) + \sum_{i < j < k}^{A} v_{ijk}^{3N}$$

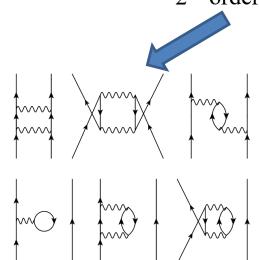
$$\hat{H} = E_0 + \sum_{pq} [t_{pq} + \sum_{r=1}^{A} (V_{prqr}^{NN} + \frac{1}{2} W_{prqr}^{2B})] : \hat{a}_p^{\dagger} \hat{a}_q :$$

$$+ \frac{1}{4} \sum_{pqrs} (V_{pqrs}^{NN} + W_{pqrs}^{2B}) : \hat{a}_p^{\dagger} \hat{a}_q^{\dagger} \hat{a}_s \hat{a}_r :,$$

In valence space for GSM

MBPT renormalization: S- and Q-box folded diagrams

$$H = H_0 + (H - H_0) = H_0 + H_1$$


$$\hat{Q}(E) = PVP + PVQ \frac{1}{E - QHQ} QVP$$

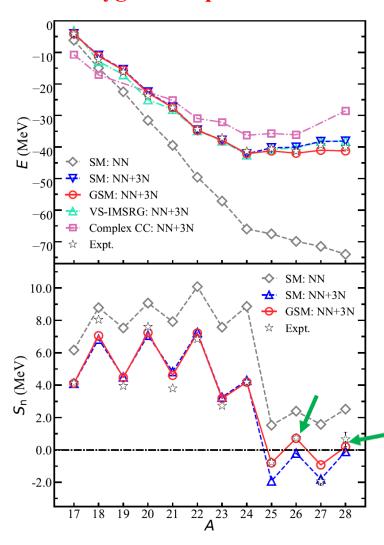
Folded diagram: to include effects from excluded configurations, which is a time-dependent perturbation using the time evolution process

$$\widehat{Q}(E) = PVP + PV\frac{Q}{E - QH_0Q}VP + PV\frac{Q}{E - QH_0Q}VP\frac{Q}{E - QH_0Q}VP + \dots$$

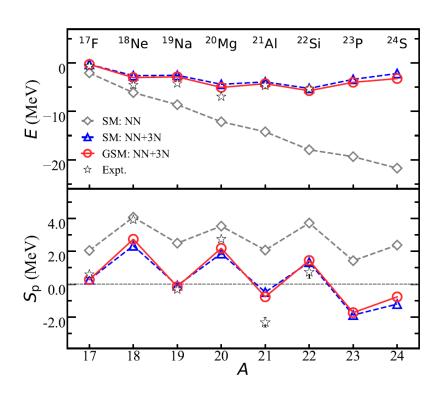
2nd order perturbation

3rd order perturbation

$$V_{eff} = \widehat{Q}(\varepsilon_0) - \widehat{Q}'(\varepsilon_0) \int \widehat{Q}(\varepsilon_0) + \widehat{Q}'(\varepsilon_0) \int \widehat{Q}(\varepsilon_0) \int \widehat{Q}(\varepsilon_0) \dots$$

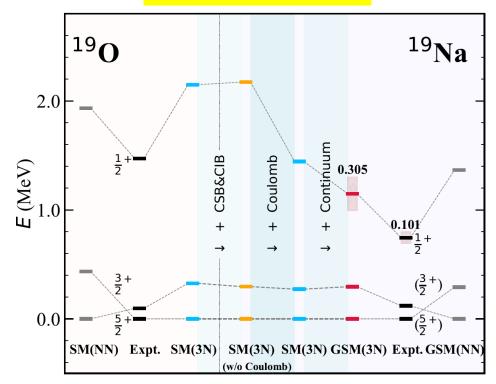

$$V_{eff} = \hat{Q}(\varepsilon_0) + \sum_{k=1}^{\infty} \hat{Q}_k(\varepsilon_0) [V_{eff}]^k$$

Q-box derivatives
$$\hat{Q}_k(E) = \frac{1}{k!} \frac{d^k \hat{Q}(E)}{dE^k}$$
$$= (-1)^k PV Q \frac{1}{(E - QHQ)^{k+1}} QVP$$


These would be a big task of *ab initio* calculation

Results

Oxygen isotopes

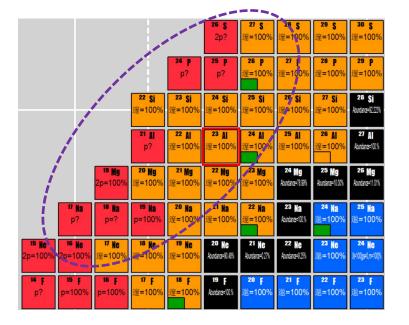


N = 8 mirror isotones

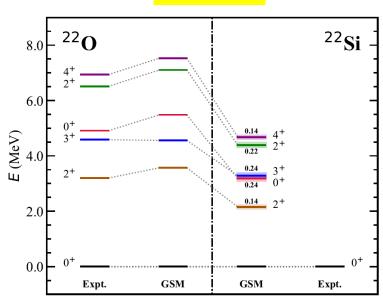
For the proton-rich isotones, due to Coulomb (centrifugal) barrier, the continuum effect is less important

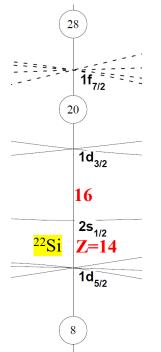
Thomas-Ehrman shift

CIB: charge independence breaking, a violation of rotation invariance in isospin space.


T=1 NN interaction: Tz=+1 (pp), 0 (np) and -1 (nn)

The main reasons: $m_p \neq m_n$, π^0 , π^{\pm} mass splitting


CSB: charge symmetry breaking, a violation of rotation invariance by 180°


Only for pp and nn

CIB is more significant than CSB

Predictions

The status of experiments for ²²Si

- 1)No mass measured
- 2) $S_{2p} \approx -108(125)$ keV (weakly unbound)

X.X. Xu et al., PLB 766, 312 (2017)

 $S_{2p} \approx 645(100) \text{ keV (weakly bound)}$

M. Babo, β -delayed charged particle decays of neutron-deficient nuclei ^{20}Mg and $^{22,\,23}Si$, Thesis, Universit' e de Caen Normandie (2016).

The status of theories for ²²Si

- 1) Shell model [N³LO(NN)+N²LO(NNN) but no continuum] $S_{2p} = -120$ keV (weakly unbound) J. D. Holt *et al.*, PRL110, 022502 (2013)
- 2) Our GSM predict: S_{2p} = 674 keV (weakly bound)

Mirror asymmetry in GT transitions: $\delta = ft^+/ft^- - 1$

$$\delta = ft^+/ft^- - 1$$

$$ft = \frac{D}{(\frac{g_A}{g_V})_{\text{eff}}^2 |M_{\text{GT}}|^2}$$

$$M_{fi}^{\rm GT} = \langle f | \tau \sigma | i \rangle$$

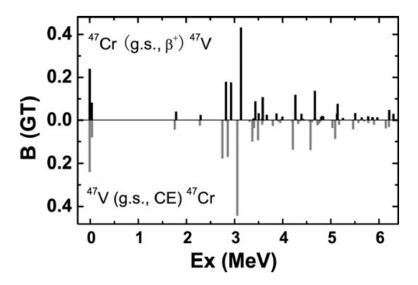
GT asymmetry may come from:

- CIB and CSB in nuclear forces, not significant (we found)
- Similar to Thomas-Ehrman shift, different asymptotes of wave functions of the initial and final states

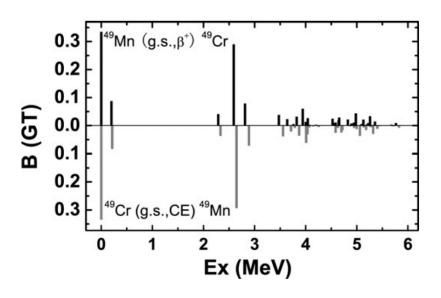
Particularly if the *s* partial wave is involved heavily in the transition.

Nuclear Physics A 814 (2008) 48-65

Isospin asymmetry effects in mirror nuclei with modern charge-dependent *NN* potential

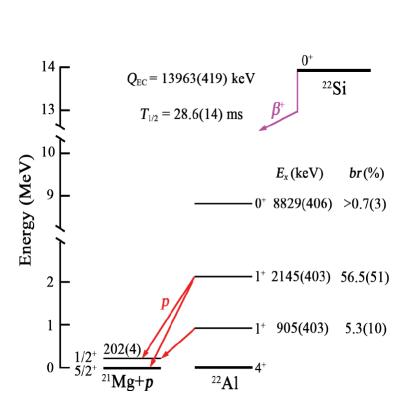

C. Qi a, F.R. Xu a,b,*

^a School of Physics, and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China

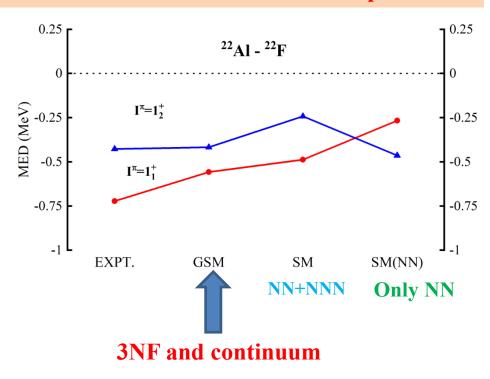

2008: CD-Bonn SM GT strengths

s partial wave is not occupied, therefore the

continuum effect is not important



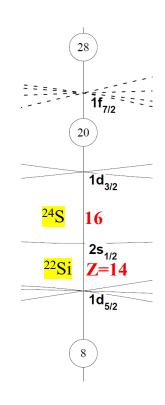
Also: CIB and CSB effects are small



Large Isospin Asymmetry in ²²Si/²²O Mirror Gamow-Teller Transitions Reveals the Halo Structure of ²²Al

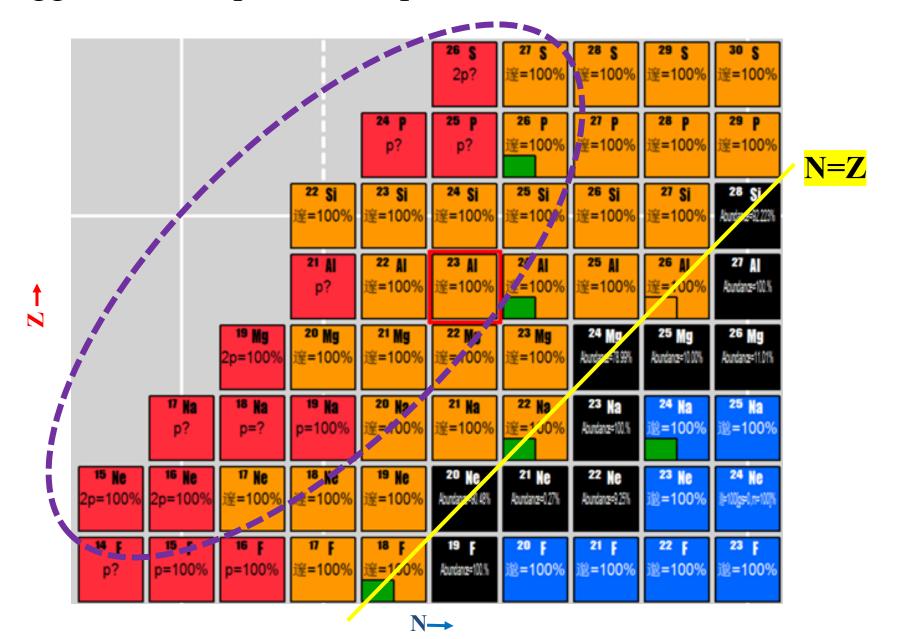
J. Lee (李晓菁),^{1,*} X. X. Xu (徐新星),^{1,2,3,4,5,†} K. Kaneko (金子和也),⁶ Y. Sun (孙扬),^{7,2,3,‡} C. J. Lin (林承键),^{3,8,§}

Our calculations: both 3NF and continuum are important


Our ab initio GSM: N³LO(NN)+N²LO(NNN), ¹⁶O core

Proton $s_{1/2}$ resonance Neutron $s_{1/2}$ bound

	22	$^2Si \rightarrow ^{22}$	Al	$^{22}O \rightarrow ^{22}F$			
	Expt.	GSM	SM	Expt.	GSM	SM	
I_i^{π}	$ M_{GT}^+ $	$ M_{GT}^+ $	$ M_{GT}^+ $	$ M_{GT}^- $	$ M_{GT}^- $	$ M_{GT}^- $	
1 ₁ +	0.1761	0.3013	0.3857	0.3098	0.5963	0.6243	
12+	0.7503	1.0703	1.0833	0.7746	1.0991	1.1179	


$$ft = \frac{D}{\left(\frac{g_A}{g_V}\right)_{\text{eff}}^2 |M_{GT}|^2}$$

$$\delta = \frac{ft^+}{ft^-} - 1 = \frac{|M_{GT}^-|^2}{|M_{GT}^+|^2} - 1$$

	$^{22}Si \rightarrow ^{22}Al$			$^{22}O \rightarrow ^{22}F$			$\delta(\%)$		
	Expt.	GSM	SM	Expt.	GSM	SM			
I_i^{π}	$\log(ft^+)$	$\log(ft^+)$	$\log(ft^+)$	$\log(ft^{-})$	$\log(ft^{-})$	$\log(ft^{-})$	Expt.	GSM	SM
11+	5.09 (58)	4.62	4.41	4.6 (1)	4.03	3.99	209(96)	291.6	161.9
12+	3.83 (61)	3.52	3.51	3.8 (1)	3.50	3.48	7(28)	5.28	6.46

Suggestions for possible experiments

III. Conclusions

> Ab initio Gamow SM Thomas-Ehrman shift, and GT transition

Continuum coupling and 3NF make a combined effect on the Thomas-Ehrman shift.

In details: 3NF mainly affects the energy of the state, while the continuum coupling affects the asymptote of the wave function of the state.

- > The wave function is a sensitive probe to detect the mirror symmetry breaking in both spectrum and GT decay.
- > The effects from CIB and CSB of the interaction are not significant.
- > ²²Si, ²⁰Mg and nuclei around would be interesting for future experiments in aspects related to the mirror symmetry breaking.

Also in collaborations with: L. Coraggio, T. Fukui, N. Itaco, A. Gargano, N. Michel

Frontiers in Nuclear Structure Theory (KTH, Stockholm, May 23-25, 2022)