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Phonons in nuclei?

The concept of phonons is central to Nuclear
Structure. II Nuclear Deformations by A. Bohr
and B.R. Mottelson.

The concept is currently put in doubt: “breakdown
of quadrupole vibrations”, “findings differ from
traditional views based on B/y vibrations”...

How about octupole phonons? Are they justified
microscopically?

T. Otsuka et al., Phys. Rev. Lett. 123 (2019) 222502
P. Garrett et al, Phys. Rev. Lett. 123 (2019) 142502



Octupole phonons in 29%Pb

THE 3-%x3~ TWO-PHONON QUARTET
AND THE PROTON PAIRING VIBRATION IN 208 pp =
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The observed large quadrupole moment of the collective 3™ state in 208pp is found to imply a consid-
erable splitting of the two-octupole-phonon quartet. The 0™ member of the quartet is predicted to come
lowest in energy. possibly as far down as 3.7 MeV. Energy considerations strongly suggest that an ob-
served 0" state at 5.26 MeV is the proton pairing vibrational state.
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Structure of a 3- state

Particle-hole basis.
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Schematic model
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Properties of the SDI

Particle-hole matrix elements are written as
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Solution of the schematic model

Exact solution: 4 x 4 matrix
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Solution of the schematic model

Exact solution: 4 x 4 matrix
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Solution of the schematic model

Approximate solution: 2 x 2 Hamiltonian matrix
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Solution of the schematic model

A generic expression for the octupole phonon:
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Proton octupole phonon
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A collective E3 transition
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A collective E3 transition
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The octupole phonon in 2%8Pb
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The octupole phonon in 2%8Pb
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The octupole phonon in 2%8Pb
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The octupole phonon in 2%8Pb
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Origin of octupole collectivity

Octupole excitations in doubly-magic nuclei
exhibit universal symmetry properties that
explain their collective structure and phonon-
like behaviour.

The separate neutron and proton phonons exist
mainly by virtue of the neutron-proton
interaction, which, besides generating their
collective structure, also couples them.



Extension to odd-mass nuclei

How to couple a particle or a hole to a phonon?

Read Nuclear Structure. II Nuclear Deformations
by A. Bohr and B.R. Mottelson.

$65  PARTICLE-VIBRATION COUPLING .
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Particle/octupole states in 2°°Pb

The 9/2* states:
9/2;>=0‘9 g9/2>+/59 3. ><].15/2;9/2>

9/2;>=/39 g9/2>—a9 3. ><J.15/2;9/2>
The 15/2 states:
15/21_>= as j15/2>+/3)15 3. xg9/2;15/2>

15/2;>= bis j15/2>—0515 3. xg9/2;15/2>
The particle-vibration coupling model (Bohr &

Mottelson) estimates the mixing coefficients o
and §.




Octupole model for odd-mass nuclei

Assume that states in the odd-mass nucleus are
either of single-particle nature or a single
particle coupled to the octupole phonon.

Calculate shell-model matrix elements in this one-
or two-dimensional basis.

Test: Take overlap with the “full” shell-model
calculation in 1p-Oh + 2p-1h basis.



Shell-model analysis of 2°°Pb
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Shell-model analysis of 2°°Pb
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Shell-model analysis of 2°°Pb
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Shell-model analysis of 2°°Pb
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Spectrum of 2°°Pb
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Conclusions

A two-dimensional collective subspace exists for
J"=3-, separate from the total 1p-1h space.

This property is valid in a schematic model and
approximately found in a realistic shell-model

calculation.

The octupole phonon retains its collective
structure when coupled to a particle or hole.

P. Van Isacker & M. Rejmund, Phys. Rev. Research 4 (2022) L022031



Open problems

Extensions:
Two-octupole-phonon states in doubly-magic nuclei.
Semi-magic nuclei;

Octupole multiplets are found in the shell-model

calculation for odd-mass nuclei. Can they be
identified experimentally?



