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Outline

Nuclear DFT provide masses with an error of 0.7 MeV [1].
Good overal accuracy for groundstate spins and many more properties.

Can they be generalized to provide accurate predictions of reactions ?
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We would like to solve for even and odd nuclei and directly use the spectra and
wavefunctions to build optical potentials

v

We would like to use the GCM method

[1] G. Scamps et al, Eur. Phys. J. A 57, 333 (2021)



Density functional theory

» Functionals globally fitted on masses, radii, fission barriers ...

P proper description of collective states, bulk properties (radii, stiffness,...)

HFB wave function:

l¢) =] 8i10)
i
B,-,B'T are quasi-particle destruction (creation) operators

P Beyond mean field trial wave function in the Generator Coordinate Method
(GCM):

v) = [ daf (3) 1o (a)

P symmetry restoration (fixed particle number, angular momentum) by projection
techniques



Formal and technical issues arise if one uses functional in a beyond-mean field
framework:

1. EDF’s (Skyrme, Gogny) contain density dependence: not clear how to be used
in the Projection+GCM

2. Approximate Hamiltonian with violation of Pauli principle leads to poles when
restoring symmetries [1]

3. Ultraviolet divergencies [2]

[1] T. Duguet, M. Bender, K. Bennaceur, D. Lacroix and T. Lesinski, PRC 79,044320 (2009) ; [2] B. G.

Carlsson, J. Toivanen and U. von Barth, PRC 87, 054303 (2013).



Poles in energy for a state in *4°Gd

B.G. Carlsson et. al.,

PRC 78, 034316 (2008)

Ultraviolet divergence
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— Convenient to have a proper Hamiltonian for projection and GCM



Postulate an Effective Hamiltonian

Heff 26"3 aj — 7X Z [ 2#02#* _ Q Qzﬂ*] aTaTaka,
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ijkl

P spherical part computed from HF with EDF’s (Skyrme,...)

P Quadrupole interaction with Woods-Saxon shape [1] with x as strength
parameter

P Pairing strength G fixed with the uniform method [2]

[1] K. Kumar and B. Sgrensen, Nuclear Physics A 146, 1 (1970)
[2] Nilsson and Ragnarsson, shapes and shells in nuclear structure (1995)



Results of the fits of x

P HF energies for 48Cr from Skyrme - SLy4
P Effective Hamiltonian denoted SLy4-H
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HFB energy surface

#8Cr (Z=24, N=24)

Solve the constrained-HFB
equations with Hef

Sample the energy surface to get
basis states

B sin(y+30°)

The HFB-states form a
non-orthogonal basis

t——

Application of projection : 013 02 025
) 3 B cos(y+30°)
techiques to restore symmetries
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Solve the Hill-Wheeler equations

B-quadrupole deformation
~-degree of triaxiality




Need overlaps betweeen all the states
O = (palbp)

In this context, overlaps are notoriously challenging to compute accurately

N. Onishi et al, NP 80 (1966); K. Hara et al, NPA 385 (1982); K. Neergard et al,
NPA 402 (1983); Q. Haider et al (1992); F. Donau, PRC 58 (1998), K. Schmid, PPN
565 (2004); M. Oi et al, PLB 606 (2005); M. Bender et al, PRC 78(2008); L. M.
Robledo, PRC 79 (2009); T. R. Rodriguez et al, PRC 81 (2010); B. Avez et al, PRC
85 (2012); G. F. Bertsch and L. M. Robledo, PRL 108 (2012); B. Bally et al, PRC97
(2018);T. Mizusaki et al, PLP 779 (2018).......



PHYSICAL REVIEW LETTERS 126, 172501 (2021)

New and Practical Formulation for Overlaps of Bogoliubov Vacua

B. G. Carlsson and J. Rotureau®
Mathematical Physics, Lund University, S-221 00 Lund, Sweden

® (Received 16 October 2020; accepted 30 March 2021; published 26 April 2021)

In this Letter, we present a new expression for the overlaps of wave functions in Hartree-Fock-
Bogoliubov based thec Starting from the Pfaffian formula by Bertsch er al [1], an exact and
computationally stable formula for overlaps is derived. We illustrate the convenience of this new
formulation with a numerical application in the context of the particle-number projection method. This new
formula allows for substantially increased precision and versatility in chemical, atomic, and nuclear physics
applications, particularly for methods dealing with superfluidity, symmetry restoration, and uses of
nonorthogonal many-body basis states.
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* we start with the formula by Bertsch and Robledo (2012)

(—1)" VTU VTV'*
(| Pp) = T’t/,pf vty yrtyrx

vzI is the occupation probability of the canonical basis state i
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Typical distribution for v,
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U,V (U’V’) are the matrices of
the Bogoliubov transformation
associated with (I)“and o,



* we start with the formula by Bertsch and Robledo (2012)
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the Bogoliubov transformation
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o2f 1 Numerical issue related to small values of v,
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o v
Introducing the matrices A, A’ : A= A =
AN

(Pa|Pp) = m@al%)

._ _1\V/2 —UU ADtp/A/
- ( 1) pf <—A/D/TD*A o’

— substantially increased precision vs previous formula and can be truncated in a
systematic manner

B. G. Carlsson and J.R, PRL 126, 172501 (2021)
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FIG. 1. Maix clement O™(n) as a function of the number of
canonical basis states included in the computation n. Panel
(@) shows the modulus of the matrix elements at ¢ = /10 as

the value in the full
model space when n = N. Panel (b) shows the absolute value of
the relative error (n) for both the real part (full line) and
imaginary part (dashed line) of the matrix element (see text). The
two horizontal doued lines indicate the error at 1% and 0.1%.
Panel (c) shows the decimal logarithm of the denominator of the
prefactor in Eg. (1). The horizontal doted line indicates the value
10722, which ds wthe ber
that can be represented using the double-precision data type. The
shaded area represents the range of validity of using Eq. (1) to
compute the overlap at the double-precision level.

" B. G. Carlsson and J.R, PRL 126, 172501 (2021)
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Minimal canonical basis

Even number parity |®):

[=Uolnxn ADTD'A']

O = (=1)"/2pf = nxn’
=0""p —IND'TD*N,y (00" st

Odd number parity BI|¢) :

—[0claxn IADID'Npy DTV, ADTU )],y
- !
O = (*1)"/2Pf [UU/]n’Xn’ 7[A/DITU(H)*]n/ X1 7[/\/DITVI(7 )]n’xl
0 W&t ]y
0

n and n’ are number of v; and v,-' in the respective canonical basis

Solves the problem to have exact and generaly applicable formulas
for overlaps of Bogoliubov vacua

[1] B.G. Carlsson and J. Rutearou PRL 126 172501 (2021)



Projection and GCM

From: i ‘I:le”,‘s,’v,KlA’ZlSN) ¢j>

o1 |Phac PZ PN 67)
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(

Hj
and Oj

One can set up the Hill-Wheeler equation:

>_Hicf = En ) O4cf
i i

Giving final states:

“M7”> = chn ‘¢J>
j

and energies:
E!



Minimal Canonical basis

Hik ak
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Transitions directly from wave functions
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Mg M;

Quadrupole operator: qu ~ er? Yo,
No effective charges



GCM-basis

To sample the energy surface from Heff
we used:

4
4

Collective coordinates: 3,7, A, jz

non-collective quasiparticle

excitations — richer spectra
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Lets test the new method with experiments



Test cases: “8Cr, 50Cr, %2Cr

Z=28

N=20 N=28

18/35



Effective Hamiltonians

In all three cases we obtain
good reproductions of the

energy surfaces
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Parameters for the calculations

» Single-particle basis
» Number of shells: 11 = 728 states
» HFB-states
» 2 200 within 12 MeV
» Projections
> Particle number: (Z, N) = (10,10)
» Angular momentum: («, 3,7) = (9,18, 36)
> In total 116640 rotations per HFB-state

» Computational time: ~1 week on ~400 cpu:s for each
nucleus

19/35



48Cy, 7=24, N=24

Half-full f7 > shell for both protons and neutrons

Terminating state at: /| =16



Spectra for *8Cr
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Backbending for *3Cr

16 -
14+ |
m—m Experiment
12~ oo SLy4 N
g 10~ —
~ 8 N
6 N
4 -
2r | | | ]
0 3

21/35



Transitions and quadrupole moments for “8Cr
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Amplitudes of HFB-states for “Cr; | =0
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Amplitudes of HFB-states for Cr; | = 2
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Amplitudes of HFB-states for “4Cr; | = 4
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Amplitudes of HFB-states for “Cr; | = 6
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Amplitudes of HFB-states for “Cr; | = 8
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Amplitudes of HFB-states for Cr; | = 10
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Amplitudes of HFB-states for Cr; | = 12
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Amplitudes of HFB-states for Cr; | = 14
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Amplitudes of HFB-states for Cr; | = 16

31/38



50Cy, Z=24, N=26

f7/2 shell for both protons and neutrons

Terminating state at: /| = 14



Spectra for %°Cr
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Transitions and quadrupole moments for >°Cr
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52Cy, Z=24, N=28

Filled f7,5 shell for neutrons

Terminating state at: / =8



Spectra for %2Cr
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49Cy, Z=24, N=25

Odd neutron in f7 /5 shell



odd nuclei: 37Cros

Nilsson neutrons
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Energy (MeV)
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Standard test case for GCM

24Mg, Z=12, N=12

half-full d 5 shell

Terminating state at: / =8



Spectra for **Mg
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Transitions and quadrupole moments for ?*Mg
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Summary/Outlook

P> The simple effective Hamiltonian works surprisingly well.

P Allowed for fully symmetry restored descriptions in the full space following the
bands to termination

P> Next: more formal expansion of Heff and computation of optical potential for

nucleon-nucleus scatttering in progress

J. Ljungberg, B. G. Carlsson, J. Rotureau, A. Idini and I. Ragnarsson, arXiv:2204.10709 (2022),
A. Samark-Roth et al. PRL. 126, 032503 (2021), B.G. Carlsson and J. Rutearou PRL 126
172501 (2021)



Thank you for your attention!



