Radial overlap correction to nuclear superallowed $0^+ \rightarrow 0^+$ Fermi β decays using the shell model with Hartree-Fock radial wave functions

L. Xayavong¹ and N. A. Smirnova²

¹Faculty of Science, National University of Laos (NUOL)

²Centre Études Nucléaires de Bordeaux-Gradignan (CENBG)

May 24, 2022

Outline

- 1 Introduction
 - Low energy tests of the Standard Model
 - Current status of $|V_{ud}|$
 - ullet $|V_{ud}|$ from the $0^+ o 0^+$ process
- $oxed{2}$ Isospin-symmetry-breaking-correction, δ_C
 - Existing calculations of δ_C
 - Shell-model description of δ_C
 - Model spaces and effective interactions
 - Evaluation of the overlap integrals in SM-HF
- Result and discussions
- 4 Summary and perspective

Low energy tests of the Standard Model

- CVC: by analogy with QED, the weak vector current is assumed to be conserved. As a result
 - the Lorentz invariant scalar current is forbidden,
 - and the vector coupling constant, G_V must be a universal constant.
- CKM unitarity: the mixing between mass and weak eigenstates is given by the CKM matrix:

$$\left(egin{array}{c} d' \ s' \ b' \end{array}
ight) = \left(egin{array}{ccc} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{array}
ight) \left(egin{array}{c} d \ s \ b \end{array}
ight)$$

- the model itself doesn't give numerical value for the matrix elements, but it requires that $V^{\dagger}V = 1$.
- the most dominant element, $|V_{ud}| = G_V/G_{\mu}$ can be obtained from nuclear physics studies.

Current status of $|V_{ud}|$

• Four semi-leptonic processes have been considered (Hardy&Towner, PRC 91, 025501, 2015)

- Superallowed $0^+ \rightarrow 0^+$ (nuclear structure).
- Neutron decay (GT/F ratio).
- Mirror transition (GT/F) ratio and nuclear structure).
- Pion decay (very weak BR $\sim 10^{-8}$).

$|V_{ud}|$ from the $0^+ o 0^+$ process

- Occurring between isobaric analogue states ($\Delta J = 0$, $\Delta \pi = NON$, $\Delta T = 0$). Therefore M_F is almost nucleus-independent, except for small ISB effects, $|M_F|^2 = 2(1 \delta_C)$.
- Basic weak-decay equation:

$$Ft=ft(1+\delta_R')(1-\delta_C+\delta_{NS})=rac{K}{2G_V^2(1+\Delta_R^V)}$$

- $f(Z, Q_{EC})$, statistical rate function,
- $t = t_{1/2}/BR$, partial half-life,
- $\delta_C \leq 1\%$, ISB correction,

• Radiative corrections: $\Delta_R^V = (2.361 \pm 0.038)\%,$ $\delta_R' \sim 1.6\%$ depending on Z and $Q_{EC},$ $\delta_{NS} \sim 0.3\%$ depending on

nuclear structure.

• For 14 cases (10 C to 74 Rb), ft has been measured with precision $\leq 0.1\%$, this study is now limited by δ_C .

Existing calculations of δ_C

- Damgaard model
- SM-WS (Towner & Hardy)
- ◆ SM-HF (Ormand & Brown)
- ★ IVMR (Auerbach)
- → RHF-RPA (Liang et al.)
- ◆ RH-RPA (Liang et al.)
- JT-proj. DFT (Satula et al.)

- The calculation of δ_C is strongly model-dependent
- The shell model (SM-WS & SM-HF) provides the best δ_C values in supporting the Standard Model

Existing shell-model calculations of δ_C

- While OBTDs can be obtained from the shell model, SPMEs must be evaluated with realistic radial wfs.
 - Hardy & Towner: WS potential whose depth and length parameters are adjusted to fix separation energies and charge radii.
 - Ormand & Brown: Skyrme-HF potential whose overall strength is scaled to reproduce separation energies.

- With SM-WS, the local variation of δ_C is strongly correlated with $S_n^f S_p^i$ (PRC 105, 044308, 2022).
- SM-HF yields smaller correction values, and completely different local behavior.
- The SM-WS agrees better with the Standard model.
- What's wrong with SM-HF?

Existing shell-model calculations of δ_C

- Possible deficiencies of the SM-HF calculation:
 - Insufficiency of the Slater approximation.
 - Lack of nuclear ISB forces (CIB and CSB forces).
 - The spurious isospin mixing.
 - Exclusion of higher order EM effects such as finite size, Coulomb spin-orbite and vacuum polarization.
 - The approximation for the center-of-mass correction.
 - Presence of correlations and deformation within the data.
 - All these deficiencies are investigated in the present work.

Shell-model description of δ_C

• Within the shell model, δ_C can be customarily expressed as,

$$\delta_C = \delta_{C1} + \delta_{C2} + \delta_{C3} + \delta_{C4} + \delta_{C5} + \delta_{C6}$$
 with LO, NLO, N^2LO, N^3LO .

• δ_{C1} accounts for the isospin mixing within the model space,

$$\delta_{C1} = 2 - rac{2}{\mathcal{M}_F^0} \sum_{k_a k_b} \sqrt{2j_a + 1} X_{ab} \langle f || [a_{k_b au_b}^\dagger \otimes \tilde{a}_{k_b au_b}]^{(0)} || i
angle ,$$

 \bullet δ_{C2} accounts for the radial mismatch between proton and neutron,

$$\delta_{C2} = -rac{2}{\mathcal{M}_F^0} \sum_{k_a k_b \pi} X_{ab} \Lambda_{k_a k_b}^{ au_a au_b \pi} \left\langle f || a_{k_a au_a}^\dagger || \pi
ight
angle^T \left\langle i || a_{k_b au_b}^\dagger || \pi
ight
angle^T,$$

where

$$\Lambda_{k_a k_b}^{ au_a au_b \pi} = 1 - \int_0^\infty R_{k_a}^{ au_a \pi}(r) R_{k_b}^{ au_a \pi}(r) r^2 dr, \;\; X_{ab} = \delta_{J_i J_f} \delta_{l_a l_b} \delta_{j_a j_b} \delta_{ au_a au_b + 1}$$

Shell-model description of δ_C

• δ_{C3} is given by

$$\delta_{C3} = -\delta_{C2} - rac{2}{\mathcal{M}_F^0} \sum_{k_a k_b \pi} X_{ab} \Lambda_{k_a k_b}^{ au_a au_b \pi} ra{f||a_{k_a au_a}^\dagger||\pi}ra{i||a_{k_b au_b}^\dagger||\pi},$$

The remaining terms are given by

$$\delta_{C4} = -rac{(\delta_{C1} + \delta_{C2})^2}{4}, \quad \delta_{C5} = -\delta_{C3} \sqrt{|\delta_{C4}|}, \quad \delta_{C6} = -rac{(\delta_{C3})^2}{4}.$$

Numerical verification (Xayavong and Smirnova, arXiv:2201.01035 [nucl-th])

All higher order terms (δ_{C3} , δ_{C4} , δ_{C5} , δ_{C6}) are currently negligible

Model spaces and effective interactions

- Core-orbital contribution to δ_{C2} could be greatly amplified due to the dependence of radial wfs. on the excitation energy of the (A-1) system (see PRC 77, 025501, 2008). Therefore the calculation of δ_{C2} generally requires a larger configuration space.
- The following model spaces and effective interactions were employed for our shell-model diagonalizations.

A	model space	interaction
9-14	$1p_{3/2}1p_{1/2}$	CKP
17-22	$1p_{1/2}1d_{5/2}2s_{1/2}$	REWIL/ZBMI/ZBMII
25-34	$1d_{5/2}2s_{1/2}1d_{3/2} \\$	USD/USDA/USDB
37-46	$2s_{1/2}1d_{3/2}1f_{7/2}2p_{3/2}$	ZBM2-MOD
49-54	$1f_{7/2}2p_{3/2}2p_{1/2}1f_{5/2}$	GXPF1A/KB3G/FPD6
61-74	$2p_{3/2}2p_{1/2}1f_{5/2}1g_{9/2}$	JUN45/MRG

Evaluation of the overlap integrals in SM-HF

• The radial Skyrme HF equations in a local form

$$\left\{egin{array}{l} rac{\hbar^2}{2m}\left[-rac{d^2}{dr^2}+rac{l(l+1)}{r^2}
ight]u^L_{lpha_q}(r)+U^L_{lpha_q}(r,\epsilon_{lpha_q})u^L_{lpha_q}(r)=\epsilon_{lpha_q}u^L_{lpha_q}(r), \ u_{lpha_q}(r)=N_q\left[rac{m_q^*(r)}{m}
ight]^{1/2}u^L_{lpha_q}(r), \end{array}
ight.$$

The local energy-dependent potential takes the form

$$egin{aligned} U^L_{lpha_q}(r,\epsilon_{lpha_q}) &= rac{m_q^*(r)}{m} iggl\{ m{x} \cdot U_q(r) + rac{d^2}{dr^2} rac{\hbar^2}{4m_q^*(r)} - rac{m_q^*(r)}{2\hbar^2} iggl[rac{d}{dr} rac{\hbar^2}{m_q^*(r)} iggr]^2 \ &+ rac{1}{2} W_q(r) raket{m{\sigma} \cdot m{l}} + \delta_{qp} V_{coul}(r) iggr\} + iggl[1 - rac{m_q^*(r)}{m} iggr] \epsilon_{lpha_q} \end{aligned}$$

- x must be adjusted to fix the separation energies.
- Unlike SM-WS, the charge radii are not fixed in SM-HF.
- $U_q(r), m_q^*(r), W_q(r), V_{coul}(r)$ and ϵ_{α_q} can be obtained from HF calculation.

Evaluation of the overlap integrals in SM-HF

Kinetic term

$$rac{\hbar^2}{m_q^*} = rac{\hbar^2}{m} + rac{1}{4} \left[t_1(2+x_1) + t_2(2+x_2)
ight]
ho + rac{1}{4} \left[t_1(1+2x_1) + t_2(1+2x_2)
ight]
ho_q$$

Central term

$$\begin{split} &U_{q} = t_{0} \left[\left(1 + \frac{x_{0}}{2} \right) \rho - \left(x_{0} + \frac{1}{2} \right) \rho_{q} \right] + \frac{t_{1}}{4} \left\{ \left(1 + \frac{x_{1}}{2} \right) \left(\tau - \frac{3}{2} \Delta \rho \right) - \left(x_{1} + \frac{1}{2} \right) \left(\tau_{q} - \frac{3}{2} \Delta \rho \right) \right. \\ &\left. + \frac{t_{2}}{4} \left[\left(1 + \frac{x_{2}}{2} \right) \left(\tau + \frac{1}{2} \Delta \rho \right) + \left(x_{2} + \frac{1}{2} \right) \left(\tau_{q} + \frac{1}{2} \Delta \rho_{q} \right) \right] \right. \\ &\left. + \frac{t_{3}}{12} \left[\left(1 + \frac{x_{3}}{2} \right) \left(2 + \gamma \right) \rho^{\gamma + 1} - \left(x_{3} - \frac{1}{2} \right) \left(2 \rho^{\gamma} \rho_{q} + \gamma \rho^{\gamma - 1} \sum_{q'} \rho_{q'}^{2} \right) \right] \right. \\ &\left. - \frac{W_{0}}{2} \left[\frac{1}{\pi} \left(J + J_{q} \right) + \frac{1}{2} \frac{d}{d\pi} \left(J + J_{q} \right) \right], \end{split}$$

Spin-orbit term

$$W_q = -rac{1}{8}\left(t_1x_1+t_2x_2
ight)J + rac{1}{8}\left(t_1-t_2
ight)J_q + rac{1}{2}W_0rac{d}{dr}\left(
ho +
ho_q
ight)$$

Evidently, isovector component (both physical & spurious) can be induced through the density dependence.

Spurious isospin mixing suppression

- Our approximation for spurious isospin mixing suppression (PRC 105, 044308, 2022):
- Construct densities and potential from the isospin-invariant HF solution for the N=Z nucleus.
- The suppression leads to a compression of proton densities.
 As a result, Coulomb potential is increased in the nucleus interior
- The nuclear part which is a functional of the proton densities is also affected. Therefore the impact of this suppression on δ_{C2} would not be systematic.

Spurious isospin mixing suppression

• The impact of the spurious isospin suppression on δ_{C2}

- It leads to a considerable increase for 30 < A < 38 and A > 33.
- The emitters with $42 \le A \le 54$ are mostly unaffected.
- Complicated effect in the light-mass region where the nuclear isovector is dominated over the Coulomb.

Center-of-mass correction

- Approximations for the CoM correction
- Exact treatment leads to a nonlocality in coordinate space.
- Type A: $m \to m \times A/(A-1)$ as usually adopted in mean-field calculations using Skyrme interaction
- Type B: $m \to m \times (A-1)/A$ as used with WS potential.

- wfs obtained with type B are more extensive because the actual mass is smaller, then more sensitive to Coulomb.
- However, the impact of this induced mass uncertainty on δ_{C2} is negligible because they don't break the isospin symmetry (see PRC 105, 044308, 2022)

Approximations for the Coulomb exchange term

- Exact treatment leads to a nonlocality in coordinate space.
- Slater approximation $V_{sl}^{ex}(r) = -e^2 \left(\frac{3}{\pi}\rho_p\right)^{1/3}$
- Generalized gradient approximation (PRC 105, 044308, 2022)

$$V_{coul}^{ex}(r) = V_{sl}^{ex}(r) \left\{ F(s) - \left[s + \frac{3}{4k_F r} \right] F'(s) + \left[s^2 - \frac{3\rho_{ch}''(r)}{8\rho_{ch}(r)k_F^2} \right] F''(s)
ight\},$$

- δ_{C2} values obtained with GGA are 2-14 % larger
- The Slater approximation already works fairy well!

Vacuum polarization

Vacuum polarization potential can be written as

$$V_{VP}(r) = rac{2lpha e^2 \lambda_e}{3r} \int_0^\infty dx x
ho_{ch}(r) \left[K_0 \left(rac{2}{\lambda_e} |r-x|
ight) - K_0 \left(rac{2}{\lambda_e} |r+x|
ight)
ight],$$

where

$$K_0(x) = \int_1^{+\infty} dt \left[e^{-xt} \left(\frac{1}{t^2} + \frac{1}{2t^5} \right) \sqrt{t^2 - 1} \right],$$

$$1 \longrightarrow \text{Without VP}$$

$$\text{With addition of VP}$$

$$5 \longrightarrow 10 \longrightarrow 15 \longrightarrow 20 \longrightarrow 25 \longrightarrow 30 \longrightarrow 35$$

$$Z \text{ of emitters}$$

The VP effect is completely negligible.

Coulomb spin-orbit

Coulomb spin-orbit term takes the following (Thomas) form

$$V_{cso}^q(r) = rac{1}{r} \widetilde{W}_q(r) \left< m{\sigma} \cdot m{l}
ight> \; \; ext{with} \; \; \; \widetilde{W}_q(r) = rac{1}{4} \left(rac{\hbar}{mc}
ight)^2 g_q^\prime rac{d}{dr} V_{coul}(r),$$

where

$$g_q^{'} = \left\{ egin{array}{ll} g_p - 1 & ext{ for proton} \ g_n & ext{ for neutron} \end{array}
ight.$$

and g_n and g_p are the neutron and proton g-factors, respectively.

• The effect of Coulomb spin-orbit is completely negligible.

Finite size effect

- In principle all EM terms should be calculated using $\rho_{ch}(r)$ instead of $\rho_p(r)$.
 - Nuclear charge density can be decomposed as

$$ho_{ch}(r) =
ho_{ch}^p(r) +
ho_{ch}^n(r) +
ho_{ch}^{ls}(r),$$

where

$$ho_{ch}^q(m{r}) = \int dm{r'}
ho_q(m{r'}) G_q(m{r}-m{r'}),$$

and

$$ho_{ch}^{ls}(r) = -\left(rac{\hbar}{mc}
ight)^2 \sum_{lpha,q}
u_lpha^q \left\langle oldsymbol{\sigma} \cdot oldsymbol{l}
ight
angle g_q' rac{1}{r^2} rac{d}{dr} \Big[r
ho_lpha^q(r) \Big],$$

the nucleon charge form factors are given by:

$$G_q(oldsymbol{r}) = \sum_{i=1}^{n_q} rac{a_q^i}{(r_q^i \sqrt{\pi})^3} \exp\left[-rac{oldsymbol{r}^2}{(r_q^i)^2}
ight]$$

with $n_q = 3$ for proton and $n_q = 2$ for neutron.

Finite size effect

• Impact of the FS on δ_{C2}

- The direct impact of the FS on δ_{C2} is completely negligible.
- However the FS has a significant impact on the charge radii which are not fixed in SM-HF. This is one of the reasons behind the discrepancy between SM-WS and SM-HF.

CSB and CIB forces

 We employed the CIB and CSB forces taken from Sagawa, Giai, and Suzuki, PRL 112, 102502 (1995)

$$egin{aligned} v_{CIB} &= rac{t_{CIB}}{2}\delta\left[P_0^{uz} + rac{P_1^{uz}}{2}\left(oldsymbol{k}^2 + oldsymbol{k}'^2
ight) + P_2^{uz}oldsymbol{k}'\cdotoldsymbol{k}
ight], \ v_{CSB} &= rac{t_{CSB}}{2}\delta\left[P_0^{sy} + rac{P_1^{sy}}{2}\left(oldsymbol{k}^2 + oldsymbol{k}'^2
ight) + P_2^{sy}oldsymbol{k}'\cdotoldsymbol{k}
ight], \end{aligned}$$

where $t_{CIB}=4t_{iz}t_{jz},\,t_{CSB}=2(t_{iz}+t_{jz}),\,P_i^{sy}=s_i(1+y_iP_\sigma)$ and $P_i^{uz}=u_i(1+z_iP_\sigma).$

CIB+CSB contribution to the kinetic field

$$\frac{1}{16} \left[2(u_1 + \tau_{qz}s_1) \rho_q(r) + (u_1 + u_2) \rho_{q'}(r) \right],$$

• CIB+CSB contribution to the central field

$$\frac{u_0}{4} \left[2\rho_q(r) - \rho_{q'}(r) \right] + \frac{\tau_{qz}s_0}{2} \rho_q(r) - \frac{3u_1}{16} \Delta \rho_q(r) + \frac{1}{32} \left[3u_1 - u_2 \right] \Delta \rho_q(r)
+ \frac{u_1}{8} \tau_q(r) - \frac{1}{16} \left[u_1 + u_2 \right] \tau_{q'}(r) - \frac{\tau_{qz}}{4} \left[\frac{3s_1}{4} \Delta \rho_q(r) + s_1 \tau_q(r) \right],$$

• CIB+CSB contribution to the spin-orbit field

CCSB and CIB forces

• The impact of the CIB and CSB forces on δ_{C2}

- The CIB contribution is completely negligible
- The CSB contributes from ranges from 10 to 30 % (in relative %)

Final results

- We have done a remarkable improvement. We observe that SM-HF tends to support SM-WS.
- However, there are still big gaps between the values obtained with SM-WS and SM-HF. Their local variations are also different.

CVC filter

- Both the local variation & the global trends are important in satisfying the CVC hypothesis.
- The CVC requires that $\mathcal{F}t$ mast be nucleus independent.
- Clearly, there is still a problem with the SM-HF.

Calculation	averaged $\mathcal{F}t$ [sec.]	χ^2/ u	scale
SkM*	3077.590 ± 0.921	2.870	1.629
SkM*-T	3076.576 ± 0.958	3.096	1.694
VP-T	3076.730 ± 0.962	3.121	1.701
FS-T	3076.564 ± 0.961	3.113	1.699
CSO-T	3076.557 ± 0.935	2.969	1.654
GGA-T	3076.223 ± 0.968	3.160	1.713
CIB-T	3076.550 ± 0.959	3.106	1.697
CSB-T	3075.099 ± 0.919	2.869	1.625
All-T	3074.807 ± 0.932	2.959	1.649
WS	3073.193 ± 0.707	1.652	1.252

Test of the local variation of δ_{C2}

Consider the following decay chain

$$a \rightarrow b \rightarrow c$$

where a denotes the even-even emitter and b the odd-odd emitter.

• With CVC validated, the so-called mirror ft ratio is given by

$$rac{ft^a}{ft^b}=1+(\delta^b_R-\delta^a_R)+(\delta^b_{NS}-\delta^b_{NS})-(\delta^b_C-\delta^a_C)$$

• The theoretical uncertainty on $(\delta_R^b - \delta_R^a)$, $(\delta_{NS}^b - \delta_{NS}^b)$ and $(\delta_C^b - \delta_C^a)$ is much smaller than that on the individual corrections. Therefore the data of mirror ft ratio can serve as an accurate test of our theoretical model, In particular ft^a/ft^b is very sensitive to the local property of δ_{C2} .

Test of the local variation of δ_{C2}

• The mirror ft ratio

- Unluckyly, only the data for A = 26, 34, 38 are precise enough for this test to be meaningful.
- For most cases, the SM-HF fails to reproduce the experimental/WS data.

Post-HF effects

- In principle, HF theory can only describe spherical close shell nuclei, any post-HF effects should be subtracted from data before fitting.
- The energy of an open shell nuclei can be decomposed as

$$E = E_{HF} + E_{PHF},$$

where E_{PHF} is the post-HF contribution.

• Suppose that E_{PHF} is dominated by the Wigner energy, namely

$$E_{PHF} = W|N - Z| + d\pi_{pn}\delta_{NZ},$$

where $W \approx 3d/2$ and $\pi_{pn} = 1(0)$ for odd-odd(other) nuclei. Subsequently the Coulomb displacement energy is given by

$$CDE = CDE_{HF} \pm 2d = S_n^f - S_p^i,$$

where +(-) corresponds to the odd-odd (even-even) emitters.

• As a sensitivity study, we adjust d to reproduce the experimental or WS values of ft^a/ft^b .

Post-HF effects

- By subtracting the Wigner energy contribution, the local property of δ_{C2} is remarkably improved.
- This result indicates that δ_{C2} is very sensitive to post-HF effects.

Summary

- Our calculation using SM-HF leads to a considerable improvement over the existing calculations. However, there is still a problem with this model.
- The calculations using SM-HF doesn't pass the CVC filter. It fails to reproduce the right local variation, unless the post HF contribution is subtracted from data. Moreover, the δ_{C2} values obtained with SM-HF are globally smaller.
- We found that δ_{C2} is sensitive to the Wigner energy.
- Perhaps better agreement between SM-WS and SM-HF will be obtained if post-HF effects are properly treated.
- A better result may be obtained if one is able to fix the charge radii.
- More reliable spurious isospin suppression is needed.