Algebraic description of the finite-N triaxial rotor

Yu Zhang

In Collaboration with:

C. Qi, F. Pan, J. P. Draayer, Y. W. He, and D. Karlsson

Outline

I Neutron-deficient nuclei: Normal and Abnormal
II Collective modes in the algebraic model
III The SU(3) theory for the rotor mode
IV A novel mode emerging from the SU(3) theory
V Summary and Outlook

Neutron-deficient nuclei: Normal and Abnormal

PHYSICAL REVIEW LETTERS 121, 022502 (2018)

Lifetime Measurements of Excited States in ¹⁷²Pt and the Variation of Quadrupole Transition Strength with Angular Momentum

B. Cederwall,^{1,*} M. Doncel,² Ö. Aktas,¹ A. Ertoprak,^{1,3} R. Liotta,¹ C. Qi,¹ T. Grahn,⁴ D. M Cullen,⁵ D. Hodge,⁵ M. Giles,⁵ S. Stolze,⁴ H. Badran,⁴ T. Braunroth,⁶ T. Calverley,⁴ D. M. Cox,^{4,†} Y. D. Fang,⁷ P. T. Greenlees,⁴ J. Hilton,⁴ E. Ideguchi,⁷ R. Julin,⁴ S. Juutinen,⁴ M. Kumar Raju,⁷ H. Li,⁸ H. Liu,¹ S. Matta,¹ V. Modamio,⁹ J. Pakarinen,⁴ P. Papadakis,^{4,‡} J. Partanen,⁴ C. M. Petrache,¹⁰ P. Rahkila,⁴ P. Ruotsalainen,⁴ M. Sandzelius,⁴ J. Sarén,⁴ C. Scholey,⁴ J. Sorri,^{4,12,§} P. Subramaniam,¹ M. J. Taylor,¹¹ J. Uusitalo,⁴ and J. J. Valiente-Dobón¹²

TABLE I. Energies of the $2_1^+ \rightarrow 0_{gs}^+$ and $4_1^+ \rightarrow 2_1^+$ transitions (E_{γ}) , deduced lifetime values (τ) for the 2_1^+ and 4_1^+ states, and corresponding reduced transition probabilities $[B(E2\downarrow)_{exp}]$ in Weisskopf units (W.u.).

Transition	E_{γ} (keV)	τ (ps)	$B(E2\downarrow)_{exp}$ (W.u.)
$2^+_1 \rightarrow 0^+_{gs}$	458	15(3)	49(11)
$4_1^+ \rightarrow 2_1^+$	612	6.2(17)	27(7)

R4/2=2.34 B4/2=0.55(19)

Collective modes in the algebraic model

Quadrupole Deformations

Collective Model: (Geometry) A. Bohr, B. R. Mottelson

$$R_k = R_0 \left[1 + \frac{5}{4\pi} \beta \cos\left(\gamma - \frac{2}{3}\pi k\right) \right]$$
$$H_B = T_{vib} + T_{rot} + V(\beta, \gamma)$$

Interacting Boson Model: (Symmetry) A. Arima, F. Iachello,

Finiteness of nuclear systems

$$H = E_0 + \sum_{\alpha\beta} \varepsilon_{\alpha\beta} b^{\dagger}_{\alpha} b_{\beta} + \sum_{\alpha\beta\gamma\delta} \frac{1}{2} u_{\alpha\beta\gamma\delta} b^{\dagger}_{\alpha} b^{\dagger}_{\beta} b_{\gamma} b_{\delta} + \cdots$$
$$b^{\dagger} = s^{\dagger}, d^{\dagger}, g^{\dagger}, \ldots$$

Collective modes in the algebraic model

FIG. 1: Contour plots generated from the potential function (6) with the nonzero parameters taken as $\varepsilon = 1.0$ for U(5), $\kappa = -1.0$ for O(6), $(\kappa = -1.0, \chi = -\sqrt{7}/2)$ for SU(3)_P and $(\kappa = -1.0, \chi = \sqrt{7}/2)$ for SU(3)_O.

D. D. Warner and R. F. Casten, Phys. Rev. C 28, 1798 (1983)

The CQ Hamiltonian in the IBM

$$\hat{H}_{CQ} = \varepsilon \hat{n}_d + \kappa_N^1 \hat{Q}^{\chi} \cdot \hat{Q}^{\chi} + \delta \hat{L}^2$$

$$\begin{split} \hat{n}_{d} &= d^{\dagger} \cdot \tilde{d}, \\ \hat{L}_{u} &= \sqrt{10} (d^{\dagger} \times \tilde{d})_{u}^{(1)}, \\ \hat{Q}_{u}^{\chi} &= (d^{\dagger}s + s^{\dagger}\tilde{d})_{u}^{(2)} + \chi (d^{\dagger} \times \tilde{d})_{u}^{(2)} \\ \gamma) &= \frac{1}{N} \langle \beta, \gamma, N | \hat{H}_{\text{CQ}} | \beta, \gamma, N \rangle |_{N \to \infty} \\ &= \varepsilon \frac{\beta^{2}}{(1 + \beta^{2})} + \delta \frac{6\beta^{2}}{(1 + \beta^{2})} \\ &+ \kappa \frac{4\beta^{2}}{(1 + \beta^{2})^{2}} \left[1 - \sqrt{\frac{2}{7}} \chi \beta \cos(3\gamma) + \frac{1}{14} \chi^{2} \beta^{2} \right] \end{split}$$

Collective modes in the algebraic model

The SU(3) theory for the rotor mode

Y. Leschber and J. P. Draayer, Phys. Lett. B **190**, 1 (1987). O. Castaños, J. P. Draayer, and Y. Leschber, Z. Phys. A **329**, 33 (1988).

$$a = \sum_{\alpha} a_{\alpha} A_{\alpha}, \ a_{\alpha} = \lambda_1 \lambda_2 \lambda_3 / D_{\alpha},$$

$$b = \sum_{\alpha} b_{\alpha} A_{\alpha}, \quad b_{\alpha} = \lambda_{\alpha}^{2} / D_{\alpha},$$
$$c = \sum_{\alpha} c_{\alpha} A_{\alpha}, \quad c_{\alpha} = \lambda_{\alpha} / D_{\alpha},$$

$$c = \sum_{\alpha} c_{\alpha} A_{\alpha}, \quad c_{\alpha} = \lambda_{\alpha} / D_{\alpha},$$

$$D_{\alpha} = 2\lambda_{\alpha}^3 + \lambda_1\lambda_2\lambda_3.$$

In body-fixed principle axis system

$$H_{\text{rot}} = A_1 L_1^2 + A_2 L_2^2 + A_3 L_3^2. \text{ (1) Geometry}$$

$$L_u = \int \rho(\vec{r})(\vec{r} \times \vec{v})_u d\tau,$$

$$Q_u^c = \sqrt{16\pi/5} \int \rho(\vec{r})r^2 Y_{2u}(\Omega) d\tau,$$

$$L^2 = L_1^2 + L_2^2 + L_3^2, \qquad \langle Q_{\alpha\beta}^c \rangle = \lambda_\alpha \delta_{\alpha\beta},$$

$$X_3^c = \sum_{\alpha\beta} L_\alpha Q_{\alpha\beta}^c L_\beta = \lambda_1 L_1^2 + \lambda_2 L_2^2 + \lambda_3 L_3^2,$$

$$X_4^c = \sum_{\alpha\beta\gamma} L_\alpha Q_{\alpha\beta}^c Q_{\beta\gamma}^c L_\gamma = \lambda_1^2 L_1^2 + \lambda_2^2 L_2^2 + \lambda_3^2 L_3^2,$$

Rewrite (1) $H_{\rm rot} = aL^2 + bX_3^c + cX_4^c$, (2) Algebraic

The SU(3) theory for the rotor mode $\operatorname{Tr}\left[(Q^{c})^{2}\right] = \frac{\sqrt{5}}{6} (Q^{c} \times Q^{c})^{0} = \frac{1}{6} Q^{c} \cdot Q^{c},$ $L_u = \int \rho(\vec{r})(\vec{r} \times \vec{v})_u d\tau,$ $\mathrm{Tr}[(Q^{c})^{3}] = -\frac{1}{36} \left(\frac{35}{2}\right)^{\frac{1}{2}} (Q^{c} \times Q^{c} \times Q^{c})^{0}.$ $Q_u^c = \sqrt{16\pi/5} \int \rho(\vec{r}) r^2 Y_{2u}(\Omega) d\tau,$ $[L_{u}, L_{v}] = -\sqrt{2} \langle |u, |v| | |u + v \rangle L_{u+v},$ $T_5 \otimes_s SO(3)$ $\left[L_{u}^{c}, Q_{v}^{c}\right] = -\sqrt{6}\langle |u, 2v| 2u + v \rangle Q_{u+v}^{c},$ $[Q_u^c, Q_v^c] = 0, \quad | \quad \langle Q_{\alpha\beta}^c \rangle = \lambda_\alpha \delta_{\alpha\beta}.$ $\langle \hat{C}_2 \rangle \gg L$ $L^b_{\mu} = \sqrt{10} (d^{\dagger} \times \tilde{d})^{(1)}_{\mu}$ $Q_u^b = 2\sqrt{2} \left[(d^{\dagger} \times + s^{\dagger} \times \tilde{d})_u^{(2)} - \frac{\sqrt{7}}{2} (d^{\dagger} \times \tilde{d})_u^{(2)} \right]$ SU(3) $[L_{u}^{b}, L_{v}^{b}] = -\sqrt{2} \langle |u, |v| | |u + v \rangle L_{u+v}^{b},$ $\hat{C}_2[SU(3)] = \frac{1}{4}\hat{Q}\cdot\hat{Q} + \frac{3}{4}\hat{L}^2,$ $\begin{bmatrix} L^b_u, Q^b_v \end{bmatrix} = -\sqrt{6} \langle 1u, 2v | 2u + v \rangle Q^b_{u+v},$ $\hat{C}_{3}[SU(3)] = -\frac{\sqrt{70}}{72} (\hat{Q} \times \hat{Q} \times \hat{Q})_{0}^{(0)} - \frac{\sqrt{30}}{8} (\hat{L} \times \hat{Q} \times \hat{L})_{0}^{(0)}$

 $\begin{bmatrix} Q_u^b, Q_v^b \end{bmatrix} = 3\sqrt{10} \langle 2u, 2v | 1u + v \rangle L_{u+v}^b.$ $\langle \hat{Q} \rangle \propto \sqrt{\langle \hat{C}_2 \rangle} = \sqrt{\lambda^2 + \mu^2 + \lambda\mu + 3\lambda + 3\mu}$

The SU(3) theory for the rotor mode

Y. Zhang, F. Pan, L. R. Dai, and J. P. Draayer, Phys. Rev. C 90, 044310 (2014).

 a_i determining (λ_0, μ_0) or (β_s, γ_s)

 $t_i = g_i(\lambda_0, \mu_0, A_1, A_2, A_3)$

$$\begin{aligned} \hat{H}_{\rm S} &= \frac{a_1}{N} \hat{C}_2[{\rm SU}(3)] + \frac{a_2}{N^3} \hat{C}_2[{\rm SU}(3)]^2 + \frac{a_3}{N^2} \hat{C}_3[{\rm SU}(3)], \\ \hat{H}_{\rm D} &= t_1 \hat{L}^2 + t_2 (\hat{L} \times \hat{Q} \times \hat{L})^{(0)} + t_3 (\hat{L} \times \hat{Q})^{(1)} \cdot (\hat{L} \times \hat{Q})^{(1)} \\ X_3^b &= \sum_{\alpha\beta} L_{\alpha}^b Q_{\alpha\beta}^b L_{\beta}^b = \frac{\sqrt{30}}{6} (L^b \times Q^b \times L^b)^{(0)} \\ X_4^b &= \sum_{\alpha\beta\gamma} L_{\alpha} Q_{\alpha\beta}^c Q_{\beta\gamma}^c L_{\gamma} \\ &= \frac{-5\sqrt{3}}{18} [(L^b \times Q^b)^{(1)} \times (L^b \times Q^b)^{(1)}]^{(0)}, \end{aligned}$$

the IBM image of a triaxial rotor with $A_1: A_2: A_3 = 3: 1: 4$

 $(\lambda, \mu) = (2N, 0), (2N - 4, 2), ..., (0, N) \text{ or } (2, N - 1)$ (2N - 6, 0), (2N - 10, 2), ...

of *N*. All the results are solved from \hat{H}_{Tri} with the parameters $a_1 : a_2 : a_3 = -\frac{27+10N}{3N} : 1 : 1$ generating $(\lambda_0, \mu_0) = (2N/3, 2N/3)$ and $t_i = g_i(\lambda_0, \mu_0, A_1, A_2, A_3)$. The dashed lines denote those solved directly from the triaxial rotor Hamiltonian (12).

$$\hat{H}_{\text{Tri}} = \hat{H}_{\text{S}} + \hat{H}_{\text{D}}$$
 $H_{\text{rot}} = A_1 L_1^2 + A_2 L_2^2 + A_3 L_3^2$

$\hat{H} = \hat{H}_{CQ} + \hat{H}_{Tri}$ $\hat{H}_{CQ} = \varepsilon \hat{n}_d + \kappa \frac{1}{N} \hat{Q}^{\chi} \cdot \hat{Q}^{\chi}$ $\hat{H}_{Tri} = \hat{H}_{S} + \hat{H}_{D}$							Spherical vibrator, Prolate rotor, Oblate rotor, Gamma- soft rotor, Triaxial rotor					
	est f	or th	ne N	/= 8	syste	em I	(,	$\lambda,\mu) =$	(16,0), (10,0),	(12,2), (6,2),(2	(8,4),(4 2,4),(4,0	(0,8) (0,2), $(0,2)$
		$E(2_1)$	$E(4_1)$	$E(6_1)$	$E(8_1)$	$E(2_2)$	$E(0_2)$	$2_1 \rightarrow 0_1$	$4_1 \rightarrow 2_1$	$6_1 \rightarrow 4_1$	$2_2 \rightarrow 0_1$	$0_2 \rightarrow 2_1$
	Rotor	1	2.33	3.73	5.28	3.42	-	1.0	1.23	0.08	0.000	-
	(4,6)	1	2.33	12.55	23.65	3.42	-	1.0	0.595	0.584	1.508	-
	IBM _a	1	2.33	4.33	5.88	1.66	0.90	1.0	0.595	0.000	0.000	0.000
	IBM _b	1	2.41	4.15	5.57	1.64	0.92	1.0	0.677	0.174	0.005	0.331
	IBM_c	1	2.34	3.47	6.13	1.76	1.33	1.0	0.571	0.122	0.216	0.074
	¹⁷² Pt	1	2.34	3.83	6.54	-	-	1.0	0.55(19)	-	-	-

TABLE I: IBM_a represents the parameters fully determined by the mapping with $(\lambda_0, \mu_0) = (4, 6)$ and $A_1 : A_2 : A_3 = 20 : 1 : 39$; IBM_b represents n_d term added to IBM_a, IBM_c is similar to IBM_b but without confining (λ_0, μ_0) = (4,6). The average value of γ_s for the ground state is, respectively, obtained as $\langle \gamma_s \rangle \approx 35^\circ$.

Summary and Outlook

Summary

- A) A novel model with B4/2<1.0 and R42>2.0 can naturally appear in the SU(3) theory for the triaxial rotor.
- B) The usual feature B4/2<1.0 in realistic system may be due to the finite N effects on triaxial rotation.

Outlook

- A) In experiments: more data for low-energy 2+, 0+ etc is expected
- B) On theory: Test the idea in the IBM-2 or Shell model

Thanks for your attention !

