

Analysis Update: $p_{\rm T}$ spectra as a function of $R_{\rm T}$ for pp collisions at $\sqrt{s_{\rm NN}}=5.02~{\rm TeV}$ [

Tutor: Dr. Antonio Ortiz Velásquez

Luz Elena Tiscareño Montoya Paola Vargas Torres

Tuesday, January 25th 2021

Tracking efficiency

The tracking efficiency is the result of the reconstructed primary particles over generated primary particles.

 $\varepsilon(p_{\rm T}) = \frac{N_{\rm prim, rec}^{\rm MC}(p_{\rm T})}{N_{\rm prim, gen}^{\rm MC}(p_{\rm T})}$

The "real" tracking efficiency for each particle species is a convolution of the particles decay probability and detector effects. The rest tracking efficiency is given by the weighted sum of the rest bulk particle tracking efficiencies:

$$\varepsilon_{rest}(p_{\rm T}) = \sum_{i=e,\mu,\Omega,\Xi} \frac{N_{\rm i}^{\rm MC}(p_{\rm T})}{N_{\rm rest}^{\rm MC}(p_{\rm T})} \varepsilon_i$$

Luz Tiscareño & Paola Vargas

 $p_{\rm T}$ spectra as a function of $R_{\rm T}$ for pp collisions at $\sqrt{s_{\rm NN}} = 5.02~{\rm TeV}$

Particle composition correction factor

The data-driven tracking efficiency can be calculated using:

The relative single-particle abundances in Monte

Carlo differ from data.

 $\varepsilon_{incl}(p_{\rm T}) = \sum f_i(p_{\rm T})\varepsilon_i(p_{\rm T})$ $i=\pi,K,p,\Sigma,rest$

For that reason the tracking efficiency is reweighed with measured particle composition.

Instituto de Ciencias Nucleares, UNAM

Luz Tiscareño & Paola Vargas

 $p_{\rm T}$ spectra as a function of $R_{\rm T}$ for pp collisions at $\sqrt{s_{\rm NN}} = 5.02~{\rm TeV}$

The single-particle spectra

Instituto de Ciencias Nucleares, UNAM

The measured single-particle spectra in pp collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV are

shown in the next figures:

★ considering a fit for low- $p_{\rm T}$ because the spectra does not cover the full transverse-momentum range of $p_{\rm T} < 0.5$ GeV.

♦ shown also a power law to $p_{\rm T}$ > 3 GeV.

 $p_{\rm T}$ spectra as a function of $R_{\rm T}$ for pp collisions at $\sqrt{s_{\rm NN}}=5.02~{\rm TeV}$

The single-particle spectra

 $p_{\rm T}$ spectra as a function of $R_{\rm T}$ for pp collisions at $\sqrt{s_{\rm NN}} = 5.02 {\rm ~TeV}$

The single-particle spectra

 $p_{\rm T}$ spectra as a function of $R_{\rm T}$ for pp collisions at $\sqrt{s_{\rm NN}} = 5.02 {\rm ~TeV}$

The single-particle spectra

 $p_{\rm T}$ spectra as a function of $R_{\rm T}$ for pp collisions at $\sqrt{s_{\rm NN}} = 5.02 {\rm ~TeV}$

Instituto de Ciencias **Nucleares**

UNAM

 $p_{\rm T}$ spectra as a function of $R_{\rm T}$ for pp collisions at $\sqrt{s_{\rm NN}} = 5.02 {\rm ~TeV}$

Construction of Σ^+ and Σ^+ spectra

Instituto de Ciencias Nucleares, UNAM

Since there is no measurement of Σ + and Σ - particles as well as their corresponding antiparticles, their similarity in composition with Λ is exploited to construct a realistic Σ + and Σ - spectrum.

$$\Sigma^+(uus)$$
 $\Sigma^-(dds)$ $\Lambda(uds)$

The procedure uses the following formula:

$$N_{\Sigma^{+/-}}^{const}(p_{\mathrm{T}}) = \frac{N_{\Sigma^{+/-}}^{\mathrm{MC}}(p_{\mathrm{T}})}{N_{\Lambda}^{\mathrm{MC}}(p_{\mathrm{T}})} N_{\Lambda}^{\mathrm{mes}}(p_{\mathrm{T}})$$

Luz Tiscareño & Paola Vargas

 $p_{\rm T}$ spectra as a function of $R_{\rm T}$ for pp collisions at $\sqrt{s_{\rm NN}}=5.02~{
m TeV}$

 $p_{\rm T}$ spectra as a function of $R_{\rm T}$ for pp collisions at $\sqrt{s_{\rm NN}} = 5.02 {\rm ~TeV}$

The single-particle spectra

Luz Tiscareño & Paola Vargas

 $p_{\rm T}$ spectra as a function of $R_{\rm T}$ for pp collisions at $\sqrt{s_{\rm NN}} = 5.02 {\rm ~TeV}$

Relative abundances

Luz Tiscareño & Paola Vargas

 $p_{\rm T}$ spectra as a function of $R_{\rm T}$ for pp collisions at $\sqrt{s_{\rm NN}} = 5.02 {\rm ~TeV}$

