Higgs, Heavy Bosons, WIMPs, Other Searches

Ken-ichi Hikasa (Tohoku U.)

Higgs bosons

30 years of Higgs searches20 years of encoding Higgs section (personally)

2

Higgs Bosons

- Minireview by G. Bernardi, M. Carena, T. Junk
 (27 pages, Updated May 2010) → G. Bernardi's talk
- Data Listings (Overseer: G. Weiglein, Encoder: K. Hikasa)
 - Standard Model H⁰
 - MSSM H_1^0 , A^0
 - Nonstandard H⁰ (doublet)
 - Charged H[±] (doublet)
 - $H^{\pm\pm}$ (triplet/singlet)

 1982: First appearance in the data listing, but located in 'Other stable particle searches' section

H	н		HIGGS BOSON MASS LIMIT	(GEV)	1/82*
ł	H	A	0 0.409 CR MORE	DZHELYADI 81 ETAPRIM>ETA HIGGS	1/82*
H	н	A	DZHELYADIN 81 OBTAINED	BR(ETA PRIM>ETA MU+MU-)<1.5E-5 (CL=.90)	1/82*
ŀ	H	A		HIGGS BOSON IN MU+MU- CHANNEL.	1/82*

- 1982: First appearance in the data listing
- 1988: Separate 'Higgs searches' section, H⁺, minireview

255

See key on page 129 Stable Particle Full Listings SEARCHES FOR NEUTRAL AND CHARGED HIGGS BOSONS

SEARCHES FOR NEUTRAL AND CHARGED HIGGS BOSONS

NOTE ON THE HIGGS BOSON

The Standard Model¹ contains one neutral scalar Higgs

would seem to be ruled out The experimental limit¹³ on BF($K^+ \rightarrow \pi^+ \mu\mu$) is too weak to constrain the Higgs mass

VALUE (GeV)	CLS	DOCUMENT ID		TECN	COMMENT			
>0.100	90	1 BAKER	87	CALO	$K^{\pm} \rightarrow \pi^{\pm} H^{0} (H^{0} \rightarrow e^{+}e^{-})$			
none 0 6-3 9	90	² LEE FRANZINI	87	RVUE	T (15 35) - γH°			
none 0 003-0 014	95	³ FREEDMAN	84	CNTR	$\begin{array}{l} He^{\bullet} \rightarrow He^{H0} \\ (H^{0} \rightarrow e^{+}e^{-}) \end{array}$			
none 0 00103-0 005	584	⁴ MUKHOPAD	84	RVUE	$O^{\bullet} \rightarrow OH^{0}$ $(H^{0} \rightarrow e^{+}e^{-})$			
>0.013		5 BARBIERI	75	RVUE	nN -+ nN			
· · · We do not use t	he follo	wing data for a	PIO	ges fits	limits etc ···			
		⁶ DRUZHININ	87	CALO	$\phi \rightarrow \gamma H^0 (H^0 \rightarrow \pi^0 \pi^0)$			
>0 010		BELTRAM	86	SPEC	Muonic atoms			
none 0 05-0 211		7 WILLEY	86 RVUE		$\begin{array}{ccc} K^{\pm} \rightarrow \pi^{\pm} H^{0} \\ (H^{0} \rightarrow \Theta^{+} \Theta^{-}) \end{array}$			
		⁸ HOFFMAN	83	CNIR	$ \begin{array}{l} \pi \rho \rightarrow n H^{\circ} \\ (H^{\circ} \rightarrow e^{+} e^{-}) \end{array} $			
none 0 25-0 409		^o DZHELYADIN	81		$\eta' \rightarrow \eta H^0$ $(H^0 \rightarrow \mu^+ \mu^-)$			
		10 WITTEN	81	COSM				
>9		10 GUTH	80	COSM				
>9		10 SHER	80	COSM				

Higgs searches: RPP

- 1982: First appearance in the data li
- 1988: Separate 'Higgs searches' sec
- 1990: H⁰ entries tripled, first limits from LEP

H⁰ (Higgs Boson) MASS LIMIT

These limits apply to the Higgs boson of the three-generation Standard Model with the minimal Higgs sector. Limits that depend on the $H\,t\bar{t}$ coupling may also apply to a Higgs boson of an extended Higgs sector whose couplings to up-type quarks are comparable to or larger than those of the standard one-doublet model H^0 couplings.

Some of the experiments for a light Higgs utilize its coupling with nucleons. We parameterize the Higgs-nucleon coupling (which is dominantly isosclar) as $g_{HNN} = \eta_{HNN} (\sqrt{2}G_F)^{1/2} m(N)$. The limits depend on the value of η_{HNN} used. Shifman

et al. [Phys. Lett. **78B**, 443 (1978)] obtained $\eta_{HNN} = 0.22$ assuming three heavy flavors. More recently, T.P. Cheng [Phys. Rev. **D38**, 2869 (1988)], H.-Y. Cheng [Phys. Lett. **B219**, 347 (1989)], and Barbieri and Curci [Phys. Lett. **B219**, 503 (1989)] took into account the strange-quark content of the proton as well as the heavy quark effects, and derived $\eta_{HNN} = 0.56$.

For early Higgs search papers, see J. Ellis, M.K. Gaillard, D.V. Nanopoulos, Nucl. Phys. B106, 292 (1976).

For recent and comprehensive reviews, see Gunion, Haber, Kane, and Dawson, "The Higgs Hunter's Guide," (Addison-Wesley, Menlo Park, CA, 1990), M. Sher, Phys. Rep. 179, 273 (1989), and R.N. Cahn, Rep. Prog. Phys. 52, 389 (1989).

VALUE (DEV)	CL 70	DOCOMENTID	TECIV	COMMENT	
>24 (CL = 95%)	OUR LI	TIM			
none 3.0-19.3	95	1.2 AKRAWY		$Z \rightarrow H^0 + (e^- e^-)$	
> 0.026	90	3 ATIYA	90 CNT	$ \begin{array}{c} \mu^{\pm} \mu^{-}, \nu \nu \\ \kappa \ \kappa^{\pm} \rightarrow \pi^{\pm} \ H^{0} \end{array} $	
none 0.012-0.211	90	⁴ BARR	90 CNT	$R \kappa_L^0 \rightarrow \pi^0 H^0$	
		-		$(H^0 \rightarrow e^+ e^-)$	
> 0.32		⁵ DAWSON	90 RVU	E K decays	

							-
none 0.032-15	95	2,6	DECAMP	90	ALEP	$Z \rightarrow H^0 + (e^+ e^-)$	1
						$\mu^+\mu^-, \tau^+\tau^-, \nu\overline{\nu}, a\overline{a}$	Ì
none 11-24	95	7	DECAMP	90H	ALEP	$Z \rightarrow H^0 + (e^+ e^-)$	
none 0.0012-0.052	90		DAVIER	89	BDMP		I
none 0.010-0.10	90	8	EGLI	89	CNTR	$\pi^+ \rightarrow e^+ \nu H^0$	I
> 0.010	68	9	BELTRAMI	01	SPEC	$(H^0 \rightarrow e^+ e^-)$	
none 0.003-0.012	95		FREEDMAN	86 84	CNTR	$\begin{array}{c} \text{Muonic atoms} \\ \text{He}^* \rightarrow \text{He} H^0 \\ (H^0 \rightarrow e^+ e^-) \end{array}$	
none 0.00103-0.00584		11	MUKHOPAD	84	RVUE	$0^* \rightarrow 0 H^0$	
	Collow de					$(H^0 \rightarrow e^+ e^-)$	
• • • We do not use the	TOIlOWIT						2
none 0.21-3.57		12	DAWSON	90	RVUE	$ \begin{array}{c} B \rightarrow \ \mu^+ \ \mu^- \ X; \\ B \rightarrow \ K \ (\mu^+ \ \mu^-, \end{array} \end{array} $	
		13				$\pi^{+}\pi^{-}, \kappa^{+}\kappa^{-})$	1
> 0.3		14	LEUTWYLER		RVUE	$K^+ \rightarrow \pi^+ H^0$	
none 0.21-1.0	90		ALAM	89B	CLEO	$B \rightarrow H^0 K. (H^0 \rightarrow \mu^+ \mu^-, \pi^+ \pi^-)$	
none 1.0-3.6	90	14	ALAM	89B	CLEO	$ \begin{array}{l} B \rightarrow H^0 K, (H^0 \rightarrow \mu^+ \mu^-, \pi^+ \pi^-) \\ B \rightarrow H^0 \times (H^0 \rightarrow \mu^+ \mu^-) \end{array} $	
none 0.29-0.57	90	15	ALBRECHT	89	ARG	$ \begin{array}{c} \Upsilon(1S) \to H^0 \gamma \\ (H^0 \to \pi^+ \pi^-) \end{array} $	I
none 0.22-0.32		16	ATIYA	89	CNTR	$K^+ \rightarrow \pi^+ H^0$	I
> 0.28		17	CHENG	89	RVUE		ï
none 3.6-4.6		18	EILAM	89	RVUE	$B \rightarrow H^0 X$,	I
					HIVE	$(H^0 \rightarrow \mu^+ \mu^-)$	2
> 0.018		19	GRIFOLS	89	RVUE	otot(nPb)	1
		20	LINDNER	89	THEO	Vacuum stability	I
none 0.211-0.700			RABY	89	RVUE	$B \rightarrow \mu^+ \mu^- X$ m(top) >80 GeV	I
none 0.07-0.21	90	22	SNYDER	89	MRK2	$ \begin{array}{c} B \rightarrow H^{0} \times \\ (H^{0} \rightarrow e^{+}e^{-}) \end{array} $	I
none 0.015-0.04	90	23	YEPES	89	RVUE	$ \overset{\pi^{\pm}}{(H^{0} \rightarrow e^{\pm} \nu H^{0})} $	
none 0.03-0.20		24	YEPES	89B	RVUE	$pN \rightarrow H^0 X$	I
> 0.36		25	CHIVUKULA	88	RVUE		ï
none 0.00103-3.57		21	CHIVUKULA	88	RVUE	$B \rightarrow H^0 X,$	I
				00	RUCE	m(top) > 80 GeV	
none 2-3.7		21	GRINSTEIN	88	RVUE	$B \rightarrow H^0 X,$ m(top) > 80 GeV	I
none 0.21-5	90	26	LEE-FRANZINI	88	CUSB	$\Upsilon(15.35) \rightarrow \gamma H^0$	I
	90	27	BAKER	87	CALO	$K^{\pm} \rightarrow \pi^{\pm} H^0$	Ĩ
		28	DRUZHININ	87	ND	$ \begin{array}{c} (H^0 \rightarrow e^+ e^-) \\ \phi \rightarrow \gamma H^0 \end{array} $	
none 0.05-0.211		29	WILLEY	86	RVUE		
		30	HOFFMAN	83	CNTR	$(H^0 \rightarrow e^+ e^-)$ = $p \rightarrow p H^0$	
				81		$ \begin{array}{c} (H^0 \rightarrow e^+ e^-) \\ \eta' \rightarrow \eta H^0 \end{array} $	
						$\eta \rightarrow \eta H^{\circ}$ $(H^{0} \rightarrow \mu^{+}\mu^{-})$	
		32	WITTEN	81	COSM		
		32	GUTH	80	COSM		
		32			COSM		
> 0.006		33	BARBIERI	75	RVUE	$nN \rightarrow nN$	

PDG Advisory Committee Meeting

- 1982: First appearance in the data listing
- 1988: Separate 'Higgs searches' section, H⁺, minireview
- 1990: H⁰ entries tripled, first limits from LEP
- 1992: Organized according to the relevant coupling (Z/W, quarkonium, B, K, N, other), MSSM Higgs, H⁺⁺

Limits from Couplin	g to Z/	′ w ±			From Quarkonium Decay	From B Decay			C Decay						
VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT	VALUE (GeV) CL%	VALUE (GeV)		VALUE (Ge		CL%	DOCUMENT	0	TECN	COMMENT	
>48 (CL = 95%)	OUR LIN	AIT			• • We do not use the follo	• • • We do not use								and the second se	-
>48	95	¹ DECAMP	92 ALEP	$Z \rightarrow H^0 Z^*$	>0.086 90		the follow								
>38	95	² ABREU		$Z \rightarrow H^0 Z^*$	none 0.29-0.57 90	none 0.21-3.57		>0.026	9		31 ATIYA			$K^+ \rightarrow \pi^+ H^0$	
>11.3	95	³ ACTON	91 OPAL	$H^0 \rightarrow anythin$							32 ATIYA	908	B CNTR	$ \begin{array}{c} K^+ \to \pi^+ H^0, \\ H^0 \to \gamma \gamma \end{array} $	
>41.8	95	⁴ ADEVA	91 L3	$Z \rightarrow H^0 Z^*$	none 0.21-5 90	none 0.21-1.0	90		012-0.211	90	33 BARR	00	CNITE	$\kappa_{1}^{0} \rightarrow \pi^{0} H^{0}$	
none 3-44	95	⁵ AKRAWY		$Z \rightarrow H^0 Z^*$		none 0.21-1.0	90	none 0.0	0.211	90	DAKK	90	CIVIR		
none 0.21-14	95	⁶ ABREU	90C DLPH	$Z \rightarrow H^0 Z^*$		none 1.0-3.6	90				34		DUILE	$(H^0 \rightarrow e^+ e^-)$	
none 2-32	95	7 ADEVA	90H L3	$Z \rightarrow H^0 Z^*$	1	none 1.0-3.6	90	>0.32			³⁴ DAWSON ³⁵ LEUTWYLI			K decays $K^+ \rightarrow \pi^+ H^0$	
> 2	99	⁸ ADEVA	90N L3	$Z \rightarrow H^0 Z^*$				>0.3			36 ATIVA			$K^+ \rightarrow \pi^+ H^0$	
none 0.032-15	95	⁹ DECAMP		$Z \rightarrow H^0 Z^*$	From Coupling with Nu							24		R I I #I H*	
> 0.057	95	10 DECAMP		$Z \rightarrow H^0 ee, H$		ments for a light Higgs u			From Other Tec						
none 11-41.6	95	¹¹ DECAMP		$Z \rightarrow H^0 Z^*$		gs-nucleon coupling (which			VALUE (GeV)			UMENT		TECN COMMENT	
 We do not use the 	he follow	ing data for averag	es, fits, limits,	etc. • • •		m(N). The limits depend			 We do not u 	use the f	ollowing data f	or aver	ages, fits	s, limits, etc. • • •	
> 0.21	99	¹² ABREU	91B DLPH	$Z \rightarrow H^0 Z^*$	et al. [Physics Letter	rs 78B 443 (1978)] obtain	ed nHNN	= 0.2: n	none 0.0012-0.052	9	0 DAV	IER/	89	BDMP $e^- Z \rightarrow e H^0 Z$	
		¹³ ADEVA	91D L3	$Z \rightarrow H^0 \gamma$		ly, T.P. Cheng [Physical R					40			$(H^0 \rightarrow e^+ e^-)$	
none 3-25.3	95	¹⁴ AKRAWY	91c OPAL	$Z \rightarrow H^0 Z^*$		9 347 (1989)], and Barbie count the strange-quark co			none 0.010-0.10	9	0 ⁴⁸ EGL	1	89	CNTR $\pi^+ \rightarrow e^+ \nu H^0$ $(H^0 \rightarrow e^+ e^-)$	- 1
> 1.4	68	15 ELLIS	91B RVUE	Electroweak	quark effects, and de		ntent of th	ie prot			49 LINI		00	$(H^{\circ} \rightarrow e^{+}e^{-})$ THEO Vacuum stability	
		¹⁶ HIOKI	91 RVUE	Electroweak	quark ellects, and de	$\eta HNN = 0.50.$			none 0.015-0.04		0 50 YEF			RVUE $\pi^{\pm} \rightarrow e^{\pm} \nu H^0$	
none 0.21-0.818	90	¹⁷ ABE	90E CDF	$p\overline{p} \rightarrow (W^{\pm}, Z$) + VALUE (GeV)	CL% DOCUMENT ID	TECN	<u> </u>	10110 0.015-0.04	,		ES	09	$(H^0 \rightarrow e^+e^-)$	
				$H^{0} + X$	• • • We do not use the f	following data for average	s. fits. limit	ts. etc			51 DZH	ELYAD	DIN 81	$\eta' \rightarrow \eta H^0$,
none 0.846-0.987	90	¹⁷ ABE	90E CDF	$p\overline{p} \rightarrow (W^{\pm}, Z$) +	5 BLUEMLEIN		-						$(H^0 \rightarrow \mu^+ \mu$	·-)
		18		$H^{0} + X$	Holle 0.001-0.08	DECEMILEIN	91 DDW	ir pi			⁵² WIT	TEN	81	COSM	,
none 3.0-19.3	95	18 AKRAWY		$Z \rightarrow H^0 Z^*$	>0.018	⁴¹ GRIFOLS	89 RVU	F as			52 GUT	ſΗ	80	COSM	
> 0.21	95	19 AKRAWY		$Z \rightarrow H^0 Z^*$	none 0.03-0.20	42 YEPES	898 RVU				⁵² SHE	R	80	COSM	
none 11-24	95	20 DECAMP		$Z \rightarrow H^0 Z^*$. 21 20	0.0 1000		$e^0 \rightarrow e^+ e^-$		201	0/1	1/2() K. Hikasa	1
> 1.8	68	²¹ ELLIS	908 RVUE	Electroweak	>0.010 6	68 43 BELTRAMI	86 SPEC				201		1/20	<i>i</i> x . i ii Kasa	ι
						44 FREEDMAN	84 CNT								
									$^{0} \rightarrow e^{+}e^{-})$						-
					none 0.00103-0.00584	⁴⁵ MUKHOPAD	.84 RVU	E 0* →	OH^0						

- 1982: First appearance in the data listing
- 1988: Separate 'Higgs searches' section, H⁺, minireview
- 1990: H⁰ entries tripled, first limits from LEP
- 1992: Organized according to the relevant coupling (Z/W, quarkonium, B, K, N, other), MSSM Higgs, H⁺⁺
- 1998: First LEP2 limits, only Z/W coupling data retained
- 2000: Older (superseded) limits hidden
- 2004-2008: LEP final results, Drop in # of new papers
- 2010: New results are back in increase

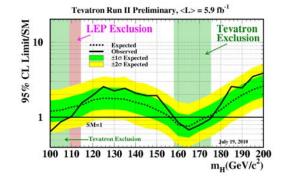
New in 2010 Edition

- Standard Higgs
 - Best limit unchanged since 2004: $M_H > 114.4 \text{ GeV} (95\% \text{CL})$
 - Tevatron searches: cross section limits in many modes (13 new papers)
- MSSM H_1^0 , A^0
 - Still new result from LEP (many 'scenarios')
 - Tevatron cross section limits (mostly $\tau\tau$ final states)

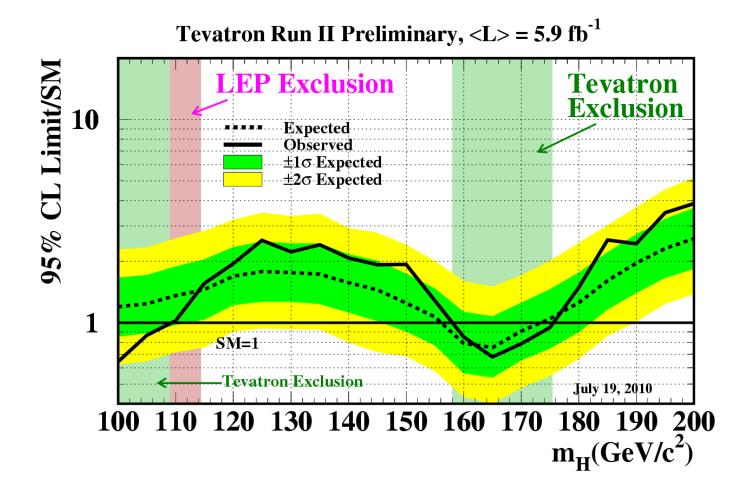
New in 2010 Edition (cont'd)

- Nonstandard H⁰
 - Papers from Tevatron, LEP (still), B factories
 - Searched modes/scenarios
 - Type II two-doublet models
 - 'Invisible' H⁰ (neutralino pairs)
 - Fermiophobic $H^0 \rightarrow \gamma \gamma$
 - $Y \rightarrow A^0 \gamma$

10


New in 2010 Edition (cont'd)

- Charged Higgs
 - Tevatron limits from $t \rightarrow bH^+$, $H^+ \rightarrow tb$
- Doubly charged Higgs
 - Tevatron limits in 110-150 GeV range $(H^{++} \rightarrow l^+ l^+)$


11

Prospects

- 34 new papers in 2010 edition (10 in 2008)
- Tevatron is the current main player
 - Each search mode is not capable of giving mass limits (let alone seeing the signal)
 - Combined limits (in PRL, excl. 162-166 GeV) missed the cutoff date by one month (→ will be on in 2011 web update)
- LHC results in 201*x* edition
 - Hopefully not in the 'searches' section

12

Heavy bosons other than Higgs

(W's, Z's, leptoquarks, and others) axions etc. are somewhere else Slides prepared by M. Tanabashi

14

Heavy bosons other than Higgs

- Encoder: M. Tanabashi (Nagoya U)
- Overseer: T. Watari (IPMU-Tokyo, --June '10),

J.-F. Arguin (LBNL, Oct '10--)

- Number of reviewed papers
 - 17 papers in 2009 (5 for W'/Z', 5 for LQ)
 - 22 papers in 2010 (7 for W'/Z', 2 for LQ)
- Highlights
 - Tevatron bounds on W'/Z' decaying into tb/tt or WZ/WW
 - Improved bounds on leptoquark pair production from Tevatron

Minireviews for heavy bosons

- W' boson searches
 - M.-C. Chen and B. A. Dobrescu (last update 2009)
- Z' boson searches
 M.-C. Chen and B. A. Dobrescu (last update 2009)
- Leptoquarks \rightarrow S. Rolli's talk
 - S. Rolli and M. Tanabashi (last update 2007)
 - We plan to update the LQ minireview in the next edition to include improved LQ bounds from Tevatron

WIMPs and other particle searches

Higgs search was here 25 yrs ago

PDG Advisory Committee Meeting

17

WIMPs and Other Particle Searches

- Located at the end of the book
- Contains everything which cannot be assigned to other sections
 - Extra Dim limits used to be here (2000)
 - WIMPs are still here, but neutralino-specific limits moved to SUSY section (2004)
- 'Minireview'
 - Just explains the structure of the section
- Data Listings (Overseer-Encoder: K. Hikasa)

WIMPs and Other Particle Searches

Subcategories

• WIMPs, stable particles in matter, neutral particle production, jet-jet resonances, charged particle production...

• New 2010 subsection

- General new physics searches (no specific model)
- Two papers from Tevatron $(3l+E_T, l\gamma b+E_T)$
- New 2010 entries
 - WIMPs: 7 papers
 - Long-lived charged particles (Tevatron): 2 papers