

Neutrinos – Part I

Cheng-Ju S. Lin

Lawrence Berkeley National Laboratory

My Brief Intro Talk:

- Address neutrino-related recommendations from the last Advisory Meeting
- Discuss some general outlook

Ramon will discuss issues relating to the neutrino listings and reviews

Recommendation 1:

"We recommend that PDG add a review article to cover accelerator-based neutrino oscillation experiments"

We have a brand new Neutrino review by K. Nakamura and S.T. Petcov. They have expanded the coverage for accelerator-based experiments (Sec 13.5.2 RPP2010, pg. 177). Please review it and let us know if you are satisfied with the content.

where e_q is the charge of the quark. For neutrino scattering with the four-Fermi interaction

$$\frac{d\sigma}{d\Omega}(\nu d \rightarrow \ell^{-}u) = \frac{G_F^2 s}{4\pi^2}, \quad (40.14)$$

where the Cabibbo angle suppression is ignored. Similarly

$$\frac{d\sigma}{d\Omega}(\nu \overline{u} \rightarrow \ell^{+}\overline{d}) = \frac{G_F^{2s}(1 + \cos \theta)^2}{4\pi^2}$$
. (40.15)

To obtain the formulae for deep inelastic scattering (presented in more detail in Section 16) we consider quarks of type i carrying a fraction $x = Q^2/(2M\nu)$ of the nucleon's energy, where $\nu = E - E'$ is the energy lost by the lepton in the nucleon rest frame. With $y = \nu/E$ we have the correspondences

$$1 + \cos \theta \rightarrow 2(1 - y)$$
,
 $d\Omega_{em} \rightarrow 4\pi f_i(x)dx dy$. (40.16)

where the latter incorporates the quark distribution, $f_i(x)$. In this way we find

$$\begin{split} \frac{d\sigma}{dx\,dy}(eN \to eX) &= \frac{4\pi\alpha^2 xs}{Q^4} \frac{1}{2} \left[1 + (1-y)^2 \right] \\ &\times \left[\frac{4}{9} (u(x) + \overline{u}(x) + \ldots) + \frac{1}{9} (d(x) + \overline{d}(x) + \ldots) \right] (40.17) \end{split}$$

where now s=2ME is the cm energy squared for the electron-nucleon collision and we have suppressed contributions from higher mass quarks.

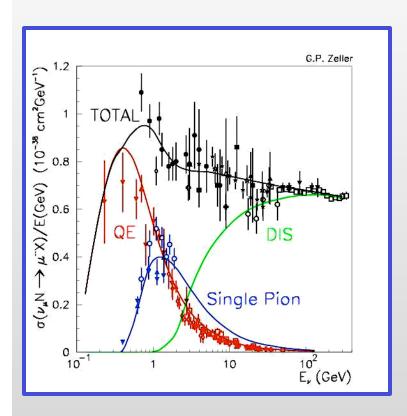
Similarly,

$$\frac{d\sigma}{dx\,dy}(\nu N \to \ell^- X) = \frac{G_F^2 x s}{\pi}[(d(x) + ...) + (1-y)^2(\overline{u}(x) + ...)]$$
 (40.18)

and

$$\frac{d\sigma}{dx\,dy}(\nabla N \to \ell^+ X) = \frac{G_F^2 xs}{\pi}[(\overline{d}(x)+...)+(1-y)^2(u(x)+...)].$$
 (40.19)

Quasi-elastic neutrino scattering $(\nu_{\mu}n \rightarrow \mu^{-}p, \nabla_{\mu}p \rightarrow \mu^{+}n)$ is directly related to the crossed reaction, neutron decay. The formula for the differential cross section is presented, for example, in N.J. Baker et al., Phys. Rev. **D23**, 2499 (1981).


Recommendation 2:

"We also recommend that PDG expand its coverage to include neutrino cross section formulae"

We have added the formulas in the "Cross-section formulae for specific processes" review

Recommendation 3:

"We also recommend that PDG expand its coverage to include total neutrino cross section measurements at low energies (100-3000 MeV)"

We are working on including a plot (similar to the one on the left but with updated results) into the "Plots of cross sections and related Quantities review"

Neutrino Landscape

Neutrino Physics is a "hot" area of research. We are expecting new results to roll off the assembly line

Physics Now:

MINOS, Super-K, MiniBoone, SciBoone, MinerVa, KamLand, K2K, T2K-ND280, OPERA, Borexino, SNO, etc.

Near Term:

T2K, NoVa, Daya Bay, Double Chooz, Reno, MicroBoone

Long Term:

Hyper-K, DUSEL, INO, etc.

Note: 0vvββ is another big area not covered in this talk

We Will Be Ready for the Results!!

C.-J. Lin – November 2010