
XRootD Monitoring Flow
Derek Weitzel

Borja Garrido Bear



Motivation
● We want to be confident in our XRootD transfer accounting
● In OSG’s first validation, we identified UDP Fragmentation as the largest 

culprit for missing validation data
● In OSG’s second validation, we found that scaling the monitoring stream can 

cause some UDP packet loss.

2

https://doi.org/10.5281/zenodo.3981359
https://doi.org/10.5281/zenodo.4688624


XRootD Monitoring = XRootD Detailed Monitoring
● Current monitoring uses detailed collector packets

3



Why XRootD Detailed Monitoring is Hard - Format
● Collector has to keep a lot of state
● Potential for packet loss means 

we have to place TTL on state
● Time between client connect and 

file close can be hours
● Must “join” different messages, 

but may lose packets
● For example, if you get a file close 

without the corresponding file 
open, then no idea what file was 
read.

4



Observations from validation v1
● Small bugs in Collector
● Incorrect assumption: Sequence numbers in monitoring packets are not a 

reliable measure of missed packets (since fixed)
● UDP fragmentation caused significant loss

Report: https://doi.org/10.5281/zenodo.3981359

5



UDP Fragmentation
● UDP Fragmentation is a known problem:

https://blog.cloudflare.com/ip-fragmentation-is-broken/
● The very Zoom meeting you are on uses UDP packets:

6

https://blog.cloudflare.com/ip-fragmentation-is-broken/


Tests performed in validation 2
In the second version of our validation we wanted to find out:

1. If sending monitoring data simultaneously from multiple XRootD servers 
would show any kind of data loss.

2. What is the maximum rate at which our collector can process monitoring 
records.

7



Monitoring data from multiple XRootD servers
On each test a client will request ‘N’ number of random files to each of the ‘M’ servers, then wait for a second and repeat until a total 
amount of ‘O’ files is reached where:

N - Req. rate
M - Num. Servers
O - Total files req.

Num. 
Servers

Files 
req. per 
server

Total 
files
req.

Req. 
rate

Files 
recorded 

avg.
Success 

%
2 100 200 20/s 200.00 100.00%

4 100 400 20/s 400.00 100.00%

8 100 800 20/s 800.00 100.00%

32 100 3,200 20/s 3196.67 99.90%

50 100 5,000 20/s 5000.00 100.00%

50 200 10,000 50/s 10000.00 100.00%

50 400 20,000 80/s 19992.33 99.96%

50 800 40,000 100/s 39991.00 99.98%

After each test. we will pull the recorded data from 
rabbitMQ and compare with what we requested.

With this experiment we concluded that data loss due to 
scale is negligible

8



XRootD Monitoring - 2 components
● Shoveler (simple):

○ Runs at Sites
○ Collects the monitoring UDP packets from XRootD
○ “Packages” the UDP messages and sends them to a reliable message bus

● Collector (complicated):
○ Runs Centrally
○ Parses monitoring messages
○ Keeps state
○ Processes packets to extract VO, application info, type of transfer

9



Solution - XRootD Monitoring Shoveler
● Design and develop a “shoveler” from the UDP format to a resilient format 

(Message Bus)

● The shoveler is simple, does no parsing or aggregation of records:

Shoveler Operation

1. Receives Packets
2. Very simple validation
3. Packages the data packet (base64’s the data, puts in json with other 

metadata)
4. Reliably sends to message bus

10



Shoveler
● A lightweight shoveler from 

UDP to a resilient transfer 
method

● Connection to RabbitMQ
● Already running at CMS 

Tier2’s UCSD, Nebraska, & 
Florida.

11



Design Decisions
● The shoveler is purposefully “simple”
● The collector performs all stateful logic

● When shoveler is disconnected from message bus, it will write messages to 
disk and replay them when reconnected.

○ A production shoveler will write ~30MB of data a day to disk if disconnected.

12



Shoveler
Available at 
https://github.com/opensciencegrid/xrootd-monitoring-shoveler/releases

Will be available in OSG’s repos soon.

Can be deployed as a static binary, RPM, docker image, or in kubernetes.

13

https://github.com/opensciencegrid/xrootd-monitoring-shoveler/releases


Extend it for European WLCG sites
● XRootD monitoring is also of concern for the WLCG
● OSG already started looking into the issues

○ Starting a collaboration will allow us to contribute and profit from the available 
improvements/fixes

● Common monitoring infrastructure for US/European sites
● Adapt components to work with specific CERN tools/versions

○ I.e: Write to CERN Messaging system based in “ActiveMQ”

● Make sure main logic is shared so any update can be profited from

14



15

OSG
(existing)

WLCG/EU
(new)

Already
Running



Progress in the WLCG
● ActiveMQ (STOMP) connection for shoveler is in “testing”

○ Running validation through the shoveler

● Collector + STOMP is in development

16



Deployment plan
● For testing phase (similar to what’s being done by OSG):

○ Pick some voluntary Sites and run the shoveler there
■ Configure XrootD servers to write in parallel to the shoveler

○ This will create a parallel flow in MONIT
■ Make sure reported numbers make sense
■ Adapt MONIT bits as needed to show required plots

● Final goal:
○ Shoveler will become part of the XrootD deployment
○ Sites will report to their own Shoveler and integrate data into the MQ
○ New GLED collectors will read from the MQ and output to the MQ
○ Previous GLED collectors will be retired

17



Acknowledgments
This project is supported by the National Science Foundation under Cooperative 
Agreement OAC-1836650. Any opinions, findings, conclusions or 
recommendations expressed in this material are those of the authors and do not 
necessarily reflect the views of the National Science Foundation.

18


