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Motivation
● We want to be confident in our XRootD transfer accounting
● In OSG’s first validation, we identified UDP Fragmentation as the largest 

culprit for missing validation data
● In OSG’s second validation, we found that scaling the monitoring stream can 

cause some UDP packet loss.
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https://doi.org/10.5281/zenodo.3981359
https://doi.org/10.5281/zenodo.4688624


XRootD Monitoring = XRootD Detailed Monitoring
● Current monitoring uses detailed collector packets
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Why XRootD Detailed Monitoring is Hard - Format
● Collector has to keep a lot of state
● Potential for packet loss means 

we have to place TTL on state
● Time between client connect and 

file close can be hours
● Must “join” different messages, 

but may lose packets
● For example, if you get a file close 

without the corresponding file 
open, then no idea what file was 
read.
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Observations from validation v1
● Small bugs in Collector
● Incorrect assumption: Sequence numbers in monitoring packets are not a 

reliable measure of missed packets (since fixed)
● UDP fragmentation caused significant loss

Report: https://doi.org/10.5281/zenodo.3981359
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UDP Fragmentation
● UDP Fragmentation is a known problem:

https://blog.cloudflare.com/ip-fragmentation-is-broken/
● The very Zoom meeting you are on uses UDP packets:
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https://blog.cloudflare.com/ip-fragmentation-is-broken/


Tests performed in validation 2
In the second version of our validation we wanted to find out:

1. If sending monitoring data simultaneously from multiple XRootD servers 
would show any kind of data loss.

2. What is the maximum rate at which our collector can process monitoring 
records.
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Monitoring data from multiple XRootD servers
On each test a client will request ‘N’ number of random files to each of the ‘M’ servers, then wait for a second and repeat until a total 
amount of ‘O’ files is reached where:

N - Req. rate
M - Num. Servers
O - Total files req.

Num. 
Servers

Files 
req. per 
server

Total 
files
req.

Req. 
rate

Files 
recorded 

avg.
Success 

%
2 100 200 20/s 200.00 100.00%

4 100 400 20/s 400.00 100.00%

8 100 800 20/s 800.00 100.00%

32 100 3,200 20/s 3196.67 99.90%

50 100 5,000 20/s 5000.00 100.00%

50 200 10,000 50/s 10000.00 100.00%

50 400 20,000 80/s 19992.33 99.96%

50 800 40,000 100/s 39991.00 99.98%

After each test. we will pull the recorded data from 
rabbitMQ and compare with what we requested.

With this experiment we concluded that data loss due to 
scale is negligible
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XRootD Monitoring - 2 components
● Shoveler (simple):

○ Runs at Sites
○ Collects the monitoring UDP packets from XRootD
○ “Packages” the UDP messages and sends them to a reliable message bus

● Collector (complicated):
○ Runs Centrally
○ Parses monitoring messages
○ Keeps state
○ Processes packets to extract VO, application info, type of transfer
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Solution - XRootD Monitoring Shoveler
● Design and develop a “shoveler” from the UDP format to a resilient format 

(Message Bus)

● The shoveler is simple, does no parsing or aggregation of records:

Shoveler Operation

1. Receives Packets
2. Very simple validation
3. Packages the data packet (base64’s the data, puts in json with other 

metadata)
4. Reliably sends to message bus
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Shoveler
● A lightweight shoveler from 

UDP to a resilient transfer 
method

● Connection to RabbitMQ
● Already running at CMS 

Tier2’s UCSD, Nebraska, & 
Florida.
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Design Decisions
● The shoveler is purposefully “simple”
● The collector performs all stateful logic

● When shoveler is disconnected from message bus, it will write messages to 
disk and replay them when reconnected.

○ A production shoveler will write ~30MB of data a day to disk if disconnected.
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Shoveler
Available at 
https://github.com/opensciencegrid/xrootd-monitoring-shoveler/releases

Will be available in OSG’s repos soon.

Can be deployed as a static binary, RPM, docker image, or in kubernetes.
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https://github.com/opensciencegrid/xrootd-monitoring-shoveler/releases


Extend it for European WLCG sites
● XRootD monitoring is also of concern for the WLCG
● OSG already started looking into the issues

○ Starting a collaboration will allow us to contribute and profit from the available 
improvements/fixes

● Common monitoring infrastructure for US/European sites
● Adapt components to work with specific CERN tools/versions

○ I.e: Write to CERN Messaging system based in “ActiveMQ”

● Make sure main logic is shared so any update can be profited from

14



15

OSG
(existing)

WLCG/EU
(new)

Already
Running



Progress in the WLCG
● ActiveMQ (STOMP) connection for shoveler is in “testing”

○ Running validation through the shoveler

● Collector + STOMP is in development
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Deployment plan
● For testing phase (similar to what’s being done by OSG):

○ Pick some voluntary Sites and run the shoveler there
■ Configure XrootD servers to write in parallel to the shoveler

○ This will create a parallel flow in MONIT
■ Make sure reported numbers make sense
■ Adapt MONIT bits as needed to show required plots

● Final goal:
○ Shoveler will become part of the XrootD deployment
○ Sites will report to their own Shoveler and integrate data into the MQ
○ New GLED collectors will read from the MQ and output to the MQ
○ Previous GLED collectors will be retired
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