

Optimising the design of small pitch Hybrid Pixel Detectors with MÖNCH04

J. Heymes,* R. Barten, F. Baruffaldi, A. Bergamaschi, M. Brückner, M. Carulla, R. Dinapoli, S. Ebner, E. Fröjdh, D. Greiffenberg, S. Hasanaj, V. Hinger, T. King, P. Kozlowski, C. Lopez Cuenca, D. Mezza, K. Moustakas, A. Mozzanica, C. Ruder, B. Schmitt, D. Thattil, J. Zhang

Paul Scherrer Institut (PSI), Photon Science Division Detector Group, CH-5232 Villigen PSI, Switzerland

* julian.heymes@psi.ch

JUNGFRAU0.1

MÖNCH01

6 Test structures on JUNGFRAU0.1 → Technology performance assessment → Base design choices [1]

MÖNCH02

Full active chip (160 x 160 pixels) 5 pixel architectures (25 μm pitch) [1] Area: 4 x 4 mm²

2012

The MÖNCH timeline

400 x 400 pixels, 25 μ m pitch \rightarrow 1 cm² Best MÖNCH02 pixel design (Noise ≈ 31e⁻ RMS) Spatial resolution (interpolated): 1–4 μm [2 - 5] Operated with high-Z sensors [6, 7]

 $2014 \rightarrow Today$

ARE MÖNCH04 **HERE**

400 x 400 pixels, 25 μ m pitch \rightarrow 1 cm² 19 pixel designs for synchrotron and XFEL applications

High testability of architectures and components $2018 \rightarrow Today$

MÖNCH1.0

Optimized pixel architectures MÖNCH for synchrotron, for XFEL, or for both? Maximum single chip area: 2 x 3 cm² Module: 2 readout chips on a single detector

MÖNCH05 before MÖNCH1.0?

SOON?

MONCH at Synchrotrons...

Exploiting the low noise for single photon detection capabilities

Fast frame rates with large duty cycle. Single photon detection capabilities with high DQE and highest spatial resolution

Soft X-ray applications

Detection of single low energy photons (< 1 keV)

High-resolution imaging

Spatial resolution of a few micrometers with interpolation algorithms

- Spectrometry [2]
- G2-less grating interferometry [3]

Energy resolved imaging

Combination of spectroscopy and imaging for X-ray applications with polychromatic beams [2]

- Laue diffraction
- Color imaging (K-edge subtraction, material discrimination)

High-resolution imaging

Charge sharing over several pixels can increase resolution (cluster size depends on photon energy; sensor material, bias, and thickness)

Position interpolation algorithm based on η algorithm: sub-division into virtual pixels to achieve spatial resolutions of a few micrometers [5]

X-ray image of a gold on silicon sample depicting the Eiger, Mönch, and Jungfrau mountains acquired with MÖNCH03 at 10 keV [7]

But limited pixel area for resources, very large amount of data, and challenging bump bonding

...and for XFELs

WE

Exploiting the charge integrating architectures

Very short exposure times with time for readout

Charge integration of multiple soft X-ray photons (up to 200 x 12 keV ph/pix/frame)

Spatial resolution will be limited to the pixel pitch which is an

improvement from the other available XFEL detectors: **ePix100: 50 μm** [8] (*LCLS, Eu-XFEL*)

Jungfrau: 75 µm [9] (SwissFEL, Eu-XFEL, LCLS, PAL-XFEL)

AGIPD: 200 μm [10] (*Eu-XFEL*) **DSSC: 204 x 236 μm²** [11] (*Eu-XFEL*)

Large Pixel Detector: 500 µm [12] (Eu-XFEL)

Dynamic Gain Switching (DGS) (dynamic range increase), and overvoltage protection required

Implemented MONCH04 pixel features

Preamp

Synchrotron applications

- Charge Sensitive Amplifiers (CSA) with static gain selection (+1 source follower design)
- Different feedback capacitor values tested
- "Stripped" variants with super high gain (and additional filtering) XFEL applications
- CSA optimized for Dynamic Gain Switching (two variants)
- Overvoltage protection circuit (not showed)
- Pixels with preamp pre-charging capabilities for testing

Correlated Double Sampling (CDS)

- Static gain selection (x1, x2, x4); doubled for super high gain pixels
- 2 pixel designs with passive CDS, and 2 designs without CDS stage
- CDS stage bypass available on most designs for testing

19 pixel designs

9 designs for synchrotron 13 designs with 200 x 50 pixels 6 designs with 200 x 25 pixels 10 designs for FEL

Storage cells

- Different capacitor technologies tested
 - MMC: high linearity, precise, low sensitivity to temperature, no leakage, poor capacitance density
 - NCAP: non-linear behavior (capacitance ∝ voltage), leakage depends on gate oxide thickness, higher capacitance density
- Different capacitance and capacity density tested
- Pixels contain 2 or 5 capacitors, each individually addressable
- Pre-charging available for storage cells and output buffer testing

Storage cells **STORE** Column Pixel output buffer

Output buffer

- Source follower output buffer
- Testing possible through storage cell pre-charging feature
- One pixel architecture without SF for charge readout

Noise 21.7 e RMS amplitude [arb.] MÖNCH03 design [HG-G4] LG capacitor x3.7 [HG-G4] $\sigma = 35.49 \pm 1.08 e^{-}$ RMS Super High Gain (SHG) [(S)HG-G8] $\sigma = 26.72 \pm 0.97 e^{-}$ RMS $\sigma = 22.75 \pm 0.74 e^{-}$ RMS Stripped SHG + filter [G8] $\sigma = 21.70 \pm 0.71 \,\mathrm{e^-}$ RMS 0.2 35 Noise [e⁻ RMS]

Preliminary characterisation results

Spectral response (2 x 2 clusters) MÖNCH03 design [HG-G4] LG capacitor x3.7 [HG-G4] Super High Gain (SHG) [(S)HG-G8] Stripped SHG [G8] amplitude [arb.] Stripped SHG + filter [G8] Normalised of O 20 25 Energy [keV]

Dark current in different storage capacitor technologies Temperature ≈ 18 °C \longrightarrow MMC: $\Delta_{Pedestal} = \sqrt{(3.51e+07 \cdot t)}$ NCAP: $\Delta_{Pedestal} = \sqrt{(4.71e+07 \cdot t)}$ [ADU 4000 MMC + NCAP: $\Delta_{Pedestal} = \sqrt{(4.11e+07 \cdot t)}$ ^b_e 2000 10^{-5} 10^{-1} 10^{0} 10^{-6} 10^{-4} 10^{-3}

MÖNCH04 Testing

- Architectures characterisation
 - Additional testing of the presented synchrotron designs (incl. CSA, CDS)
 - XFEL designs to be tested
 - Biasing optimisation and timing implementation
 - Full characterisation with soft X-ray and laser
 - DGS architectures comparison
- Noise sources investigation and optimisation (on-chip and on-board)
- Alternative storage cell usage investigation (e.g. multi-sampling, noise mitigation)

[1] R. Dinapoli et al., (2014) "MÖNCH, a small pitch, integrating hybrid pixel detector for X-ray applications", JINST 9, C05015

[3] A. Bergamaschi et al., (2015) "Looking at single photons using hybrid detectors", JINST 10, C01033

[4] S Cartier et al., (2016) "Micrometer-resolution imaging using MÖNCH", J. Synchrotron Rad. 23, 1462–1473

[5] M. Ramilli et al., (2017) "Measurements with MÖNCH, a 25 μm pixel pitch hybrid pixel detector", JINST 12, C01071

[2] A. Bergamaschi et al., (2018) "The MÖNCH Detector for Soft X-ray, High-Resolution, and Energy Resolved Applications", Synchrotron Radiation News 31:6, 11-15

The journey ahead of us

Chip design

- Selection of the optimal design and components to implement
- Design of MÖNCH05 to validate/refine the pixel architectures? One architecture for synchrotron and one for XFEL?
- Design of MÖNCH1.0
 - Up to 2 x 3 cm², at least 1 side-buttable
 - Implementation of the optimised pixel
 - Improved periphery for better performance and on-chip additions to reduce number of wirebonds

Detector technology development

- Soft X-ray
 - Use and testing of sensors with thin entrance window

Time after pre-charging to 0 V [s]

- Poster by M. Carulla, 27/06
- Detection of softer X-rays with LGADs/iLGADs
- > Talk by J. Zhang, 29/06 @14:00, and poster by M. Carulla, 27/06

Hard X-ray

 High-Z sensors characterisation and spatial resolution investigation

References

- [7] S. Chiriotti et al., (2021) "High-spatial resolution measurements with GaAs sensor with the charge integrating MÖNCH detector", iWoRiD 2021 oral presentation (30th June 2021) [8] G. Carini et al., (2016) "ePix100 camera: Use and applications at LCLS", AIP Conference Proceedings 1741, 040008
- [9] A. Mozzanica et al., (2016) "Characterization results of the JUNGFRAU full scale readout ASIC", JINST 11, C02047 [10] A. Allagholi et al., (2015) "AGIPD, a high dynamic range fast detector for the European XFEL", JINST 12, P12003
- [11] M. Porro et al., (2012) "Development of the DEPFET Sensor With Signal Compression: A Large Format X-Ray Imager With Mega-Frame Readout Capability for the European XFEL", IEEE TNS 59:6, 3339-3351 [6] S. Chiriotti et al., (2022) "High-spatial resolution measurements with a GaAs:Cr sensor using the charge integrating MÖNCH detector with a pixel pitch of 25 μm", JINST 17, P04007
- - [12] M.C. Veale et al., (2017) "Characterisation of the high dynamic range Large Pixel Detector (LPD) and its use at X-ray free electron laser sources", JINST 12, P12003