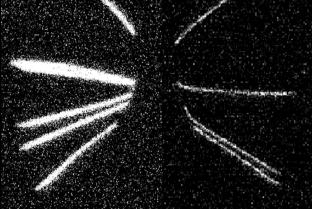
Elisabetta Baracchini

Gran Sasso Science Institute

Innovative means of operation of optical readout TPC



Fernando Domingues Amaro ¹, Elisabetta Baracchini ^{2,3}, Luigi Benussi ⁴, Stefano Bianco ⁴, Cesidio Capoccia ⁴, Michele Caponero 4,50, Danilo Santos Cardoso 60, Gianluca Cavoto 7,8, André Cortez 2,30, Igor Abritta Costa 9, Rita Joanna da Cruz Roque ¹, Emiliano Dané ⁴, Giorgio Dho ^{2,3}, Flaminia Di Giambattista ^{2,3}, Emanuele Di Marco 7, Giovanni Grilli di Cortona 4, Giulia D'Imperio 7 10, Francesco Iacoangeli 7, Herman Pessoa Lima Júnior ⁶, Guilherme Sebastiao Pinheiro Lopes ⁹, Amaro da Silva Lopes Júnior ⁹, Giovanni Maccarrone ⁴, Rui Daniel Passos Mano ¹, Michela Marafini ¹⁰, Robert Renz Marcelo Gregorio ¹¹ David José Gaspar Marques ^{2,3}, Giovanni Mazzitelli ⁴, Alasdair Gregor McLean ¹¹, Andrea Messina ^{7,8} Cristina Maria Bernardes Monteiro 100, Rafael Antunes Nobrega 9, Igor Fonseca Pains 9, Emiliano Paoletti 4, Luciano Passamonti ⁴, Sandro Pelosi ⁷, Fabrizio Petrucci ^{12,13}, Stefano Piacentini ^{7,8}, Davide Piccolo ⁴, Daniele Pierluigi ⁴, Davide Pinci ^{7,*}, Atul Prajapati ^{2,3}, Francesco Renga ⁷, Filippo Rosatelli ⁴, Alessandro Russo ⁴, Joaquim Marques Ferreira dos Santos ¹, Giovanna Saviano ^{4,14}, Neil John Curwen Spooner ¹¹. Roberto Tesauro ⁴, Sandro Tomassini ⁴ and Samuele Torelli ^{2,3}

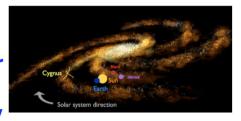
Outline

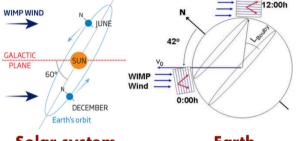
High precision imaging 3D optical readout TPC: the CYGNO experiment

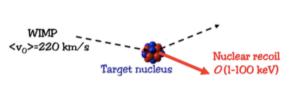
Reducing diffusion and improving tracking: negative ion drift operation

Enhancing light yield: electroluminesce after the amplification stage

High precision imaging 3D optical readout TPC The CYGNO experiment




CXGNO experiment



F. D. Amaro et al [CYGNO Collaboration], Instruments, Volume 6, Issue 1

CYGNO: high precision 3D TPC for directional Dark Matter searches and solar neutrino spectroscopy

https://web.infn.it/cygnus/

Our Galaxy

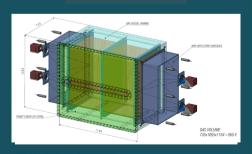
Solar system

Earth

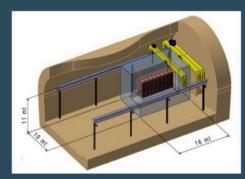
Detector target

PHASE 0: R&D and prototypes 2015/16 2017/18 2019/22 LNF LNF/LNGS ROMA1 **ORANGE LEMON** LIME

O(1) m³ Demonstrator 2023/26


LNF/LNGS

PHASE 1:


PHASE 2: 30 m³ Experiment

> 2026... **LNGS**

CYGNO 04

CYGNO 30

underground tests

background

materials test, gas purification

scalability

-1 cm drift

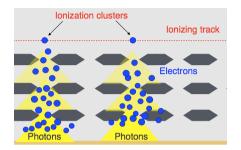
- 3D printing

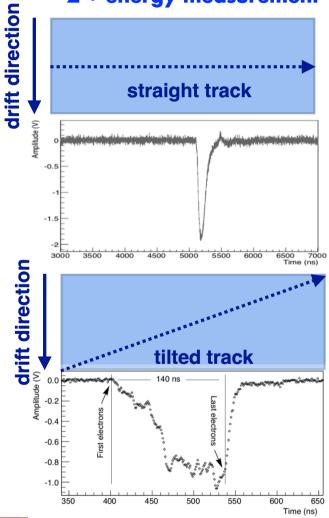
- 20 cm drift

50 cm drift

MC validation

Physics research


JINST 13 (2018) no.05, P05001

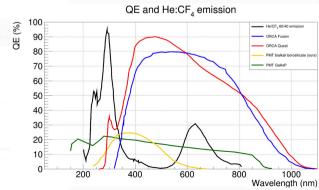

JINST 13 (2018) no.05, P05001

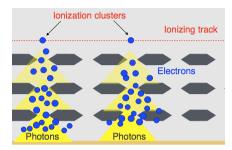
PMT:

G S CXGNO:3D TPC with optical readout via PMT + sCMOS erc

JINST 13 (2018) no.05, P05001

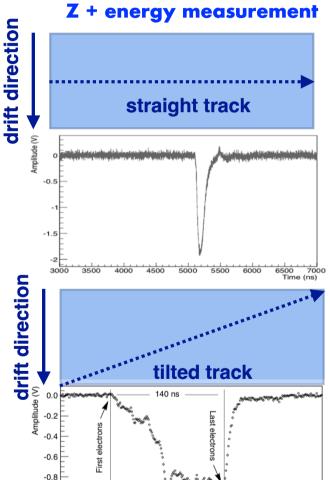
sCMOS:


high granularity X-Y + energy measurements



₹1/3 noise w.r.t. CCDs

- Market pulled
- Single photon sensitivity
- Decoupled from target
- Large areas with proper optics



PMT:

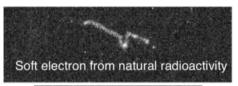
integrated **Z** + energy measurement

500

400

600

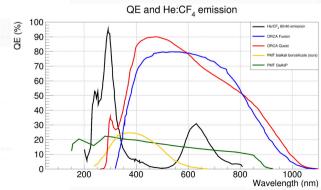
Time (ns)

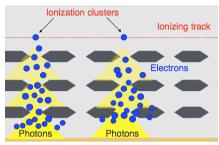

G S CXGNO:3D TPC with optical readout via PMT + sCMOS erc

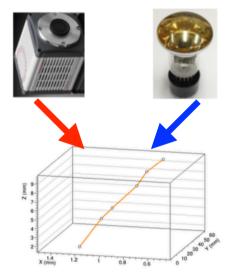
JINST 13 (2018) no.05, P05001

sCMOS:

high granularity X-Y + energy measurements

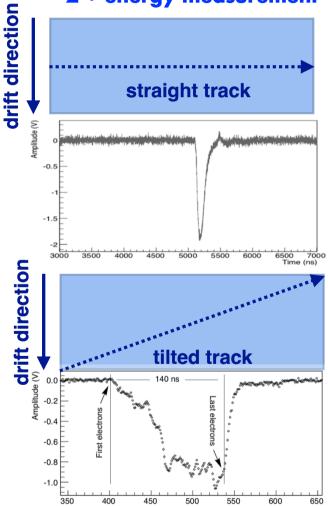

₹1/3 noise w.r.t. CCDs


Market pulled


Single photon sensitivity

Decoupled from target

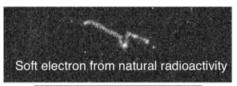
Large areas with proper optics



PMT:

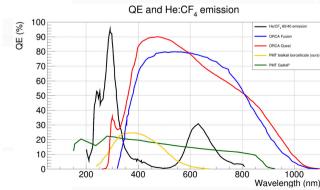
integrated **Z** + energy measurement

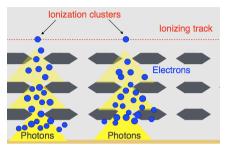
Time (ns)

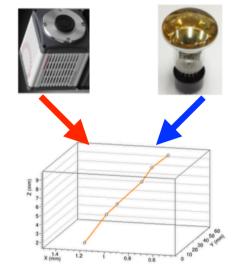


G S CXGNO:3D TPC with optical readout via PMT + sCMOS erc

sCMOS:

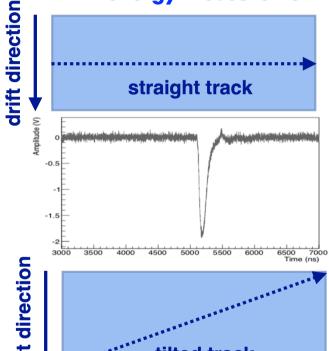

high granularity X-Y + energy measurements

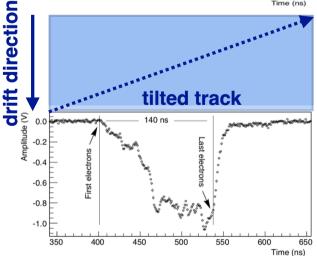



₹1/3 noise w.r.t. CCDs

- Market pulled
- Single photon sensitivity
- Decoupled from target
- Large areas with proper optics

JINST 13 (2018) no.05, P05001

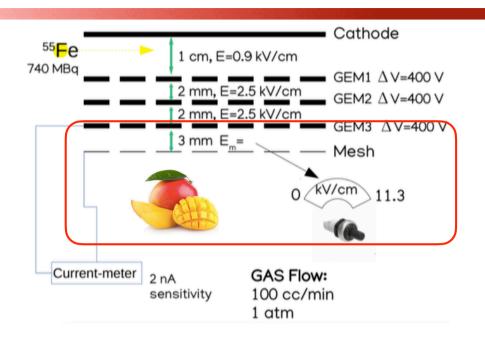



+ SF₆ for negative ion drift

PMT:

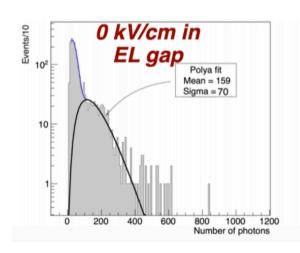
integrated **Z** + energy measurement

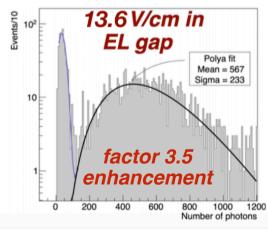
Imaging tracks with CXGNO



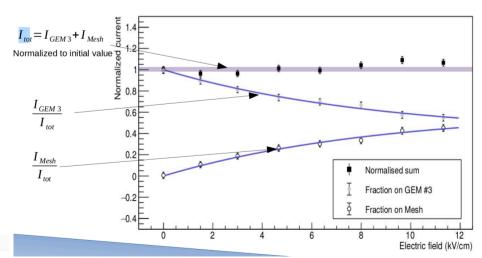
Enhanching light yield: Electroluminescence after the amplification stage

Enhancing the light yield through electroluminescence


- Add a mesh (in a later stage a glass ITO) 3 mm after MANGO last GEM
- Apply a drift field between GEM and mesh (0-12 kV/cm)
- Electrons travelling in the GEM-mesh gap produce additional light with no (or relatively low) further ionisation

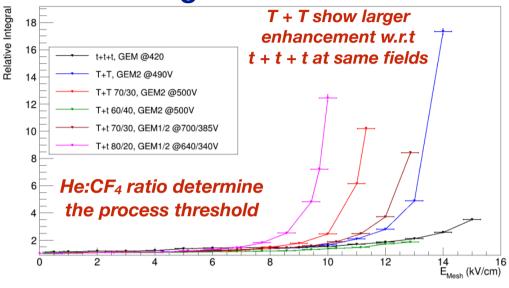

First evidence of luminescence in a He/CF_4 gas mixture induced by non-ionizing electrons

<u>E. Baracchini</u> (Gran Sasso), <u>L. Benussi</u> (Frascati), S. Bianco (Frascati), C. Capoccia (Frascati), M. Caponero (Frascati and ENEA, Frascati) et al. (Apr 22, 2020)

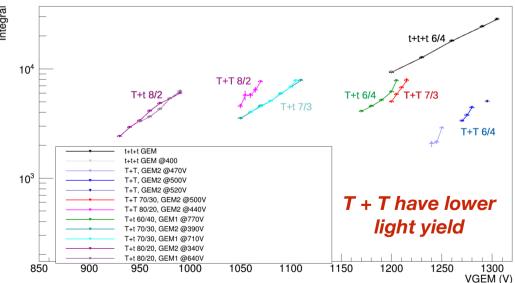

Published in: JINST 15 (2020) 08, P08018 • e-Print: 2004.10493 [physics.ins-det]

55Fe light spectra

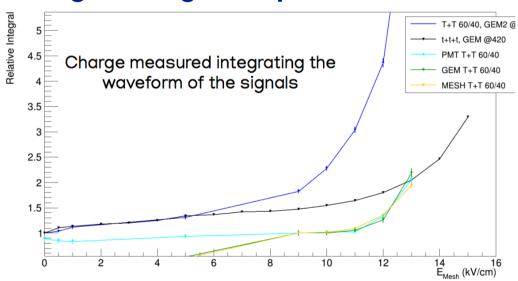
55Fe GEM & mesh currents



EL studies varying GEMs configuration & He:CF4 ratio


Triple thin 50 um Double thick 125 um (t + t + t)(T + T)50um GEM, 70um holes 140um pitch 125um GEM, 175um holes 350um pitch Cathode Cathode 0,8 cm, E=1 kV/cm 0,8 cm, E=1 kV/cm GEM1 ΔV~410 V GEM1 Δ V~750 V GEM2 ΔV~410 V 2 mm, E=2.5 kV/cm GEM3 ΔV~410 V GEM2 ΔV~500 V 3 mm E Mesh (T~50/60 %)

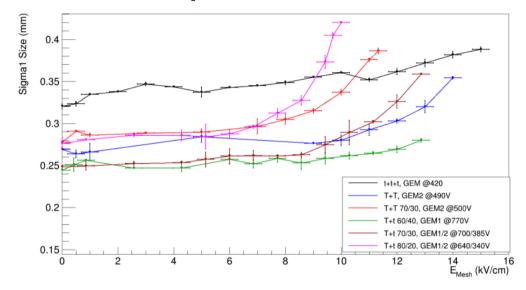
Relative light increase WITH EL



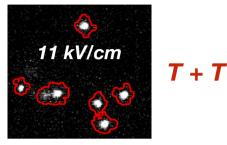
Light yield WITHOUT EL

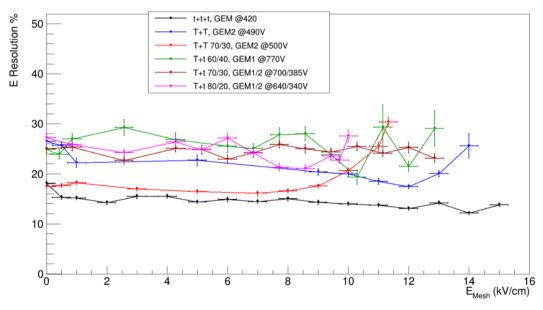
Digitizer

Light/charge comparison WITH EL



Energy and spot size (i.e. space) resolution with EL


55Fe spot size vs EL field


T + T displays better space resolution, but with larger He fraction degradates faster than t + t + t with raising fields

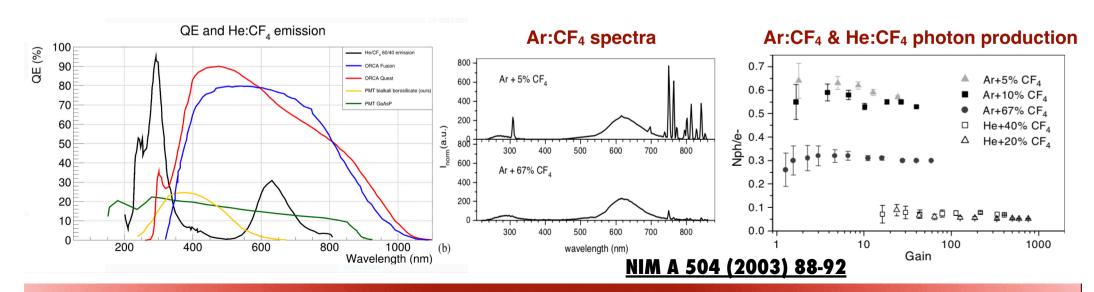
Iron looks like a round spot in our images: spot size is a measurement of the diffusion

55Fe energy resolution vs EL field

t + t + t displays better energy resolution and no significant degradation is seen

Conclusions & outlook

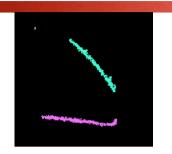
- High precision optical TPC with 3D tracking through PMT + sCMOS is a very promising technique:
 - For directional Dark Matter searches and solar neutrino spectroscopy (see F. Di Giambattista poster)
 - For large field of view X-ray polarimetry detectors (see E. Baracchini poster)
 - For neutron spectroscopy (see F. Di Giambattista poster at NDRA 2022 Summer School)
 - Migdal effect measurement
 - Ş
- Alternative means of operation of TPC can significantly boost detection performances
- We demonstrated for the first time the possibility of achieving negative ion drift operation at atmospheric (mountain) pressure with an optical readout
 - First ever detection of negative ion drift with PMT!
 - Significant reduction of diffusion observed with respect to He:CF4 classic ED at same light yield
 - Systematic diffusion data acquired (last week...), analysis on going
 - Next steps: explore different ratios of same mixtures & lower energy threshold
- - Can be used to enhance light yield of several 3-10 factor without significant degradation of resolution
 - Systematic investigation of process dependence on GEM thickness & gas mixtures
 - Paper in preparation

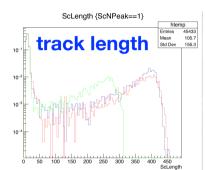


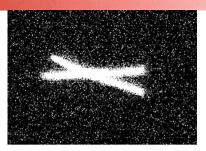
Backup slides

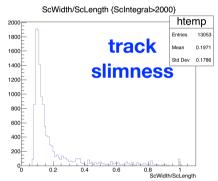
S CMOS characteristics & gas emission spectraerc

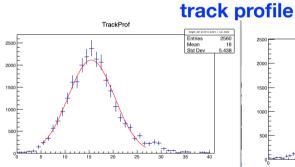
https://www.hamamatsu.com/eu/en/product/cameras/cmos-cameras.html

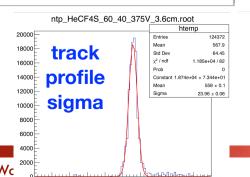

HAMAMATSU	# of pixels	pixel size [um²]	sensor area [cm²]	dynamic range	readout noise (fast scan)	Exposure time (fast)
Orca Flash	2048 x 2048	6.5 x 6.5	1.33 x 1.33	37000:1	1.4 (1.6) rms	33 (10) sus
Orca Fusion	2304 x 2304	6.5 x 6.5	1.498 x 1.498	21400:1	0.7 (1.4) rms	280 (17) us
Orca Quest	4096 x 2304	4.6 x 4.6	1.884 x 1.060	25900:1	0.27 (0.43) rms	200 (7.2) us

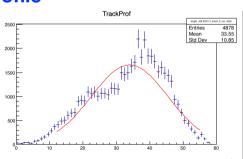


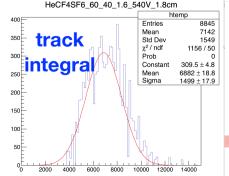

Data analysis strategy

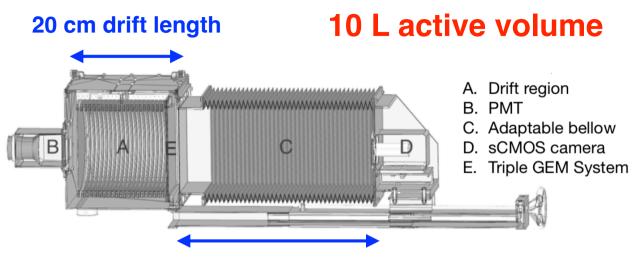


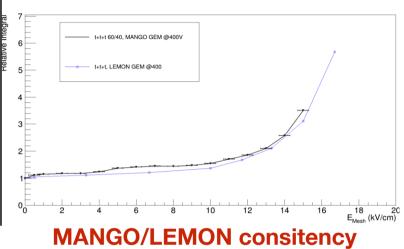

- Track reconstructed with CYGNO autumn2021 code
- Fit reconstructed tracks transverse profile
- Tracks selection:
 - track length > 150 (300) pixels (depending on source position)
 - track slimness < 0.3
 - # of peaks in the transverse profile == 1 (select single tracks)
 - Chi2/nDOF of transverse fit profile < 5 (remove additional multiple tracks)
- Sigma of track profile and track integral fitted with Gaussian to estimate diffusion and light yield

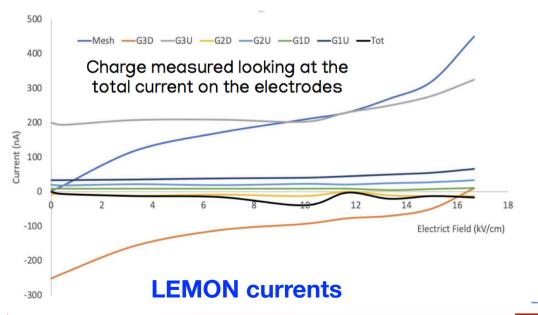


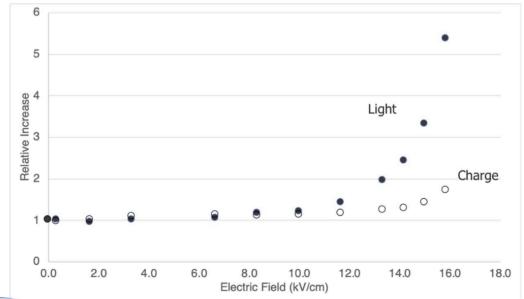




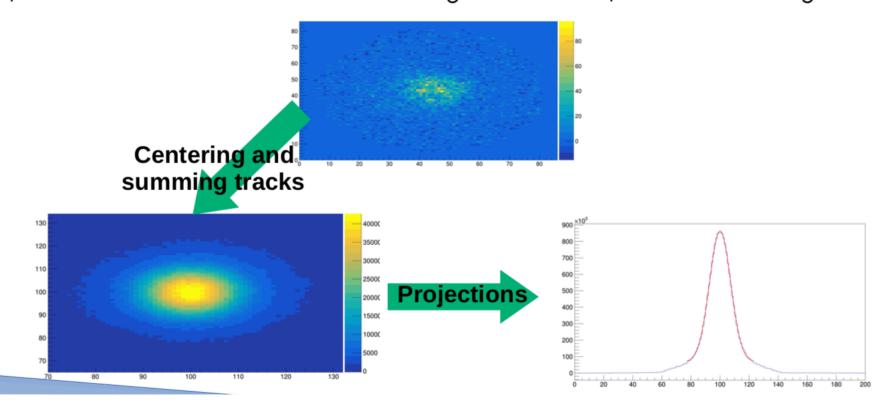





EL measurements in LEMON

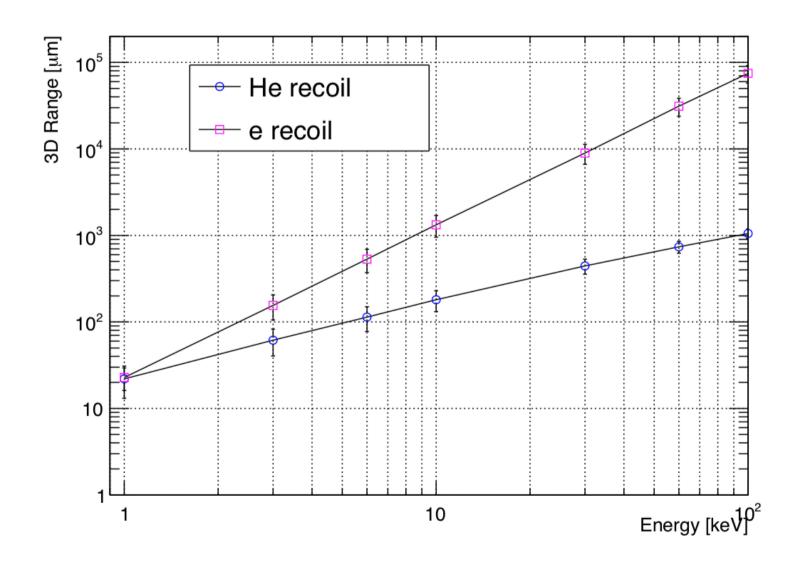


52.5 cm sCMOS distance d from GEMs

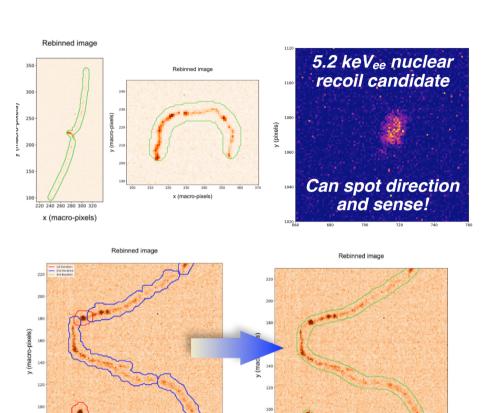


Spot size evaluation

SIZE MEASUREMENT

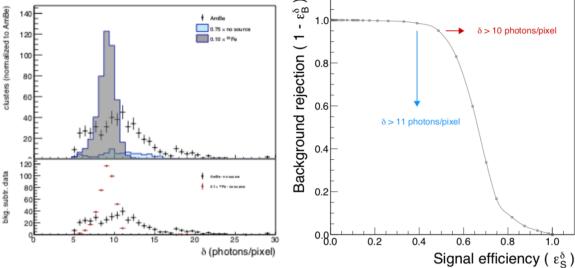

• To quantify the dimension of the spots, trying to be independent from the light output, all the spots are centred and summed and the sigma of the shape is fitted with a gaussian

Range in He:CF₄ 60:40 @ 1 bar



LEMON

Response to AmBe source: low energy nuclear recoil & discrimination from 55Fe


 $\delta > 10$ photons/pixel

Reconstruction based on custom multiple iteration of IDBSCAN + morphological geodesic active contours (GAC)

x (macro-pixels)

JINST 15 (2020) 12, T12003

40% nuclear recoil efficiency for energies < 20 keV_{ee}, with 99% ⁵⁵Fe events rejected

Signal efficiency			Background efficiency			
$arepsilon_S^{presel}$	$arepsilon_S^\delta$	$arepsilon_S^{total}$	$arepsilon_B^{presel}$	$arepsilon_B^\delta$	$arepsilon_B^{total}$	
0.98	0.51	0.50	0.70	0.050	0.035	
0.98	0.41	0.40	0.70	0.012	0.008	

Measur.Sci.Tech. 32 (2021) 2, 025902