

Optoelectronic properties of High-Flux CdZnTe with optimized electrodes.

Baussens O., Ponchut C., Ruat M., Bettelli M., Zanettini S., Zappettini A.

Cadmium Zinc Telluride (CdZnTe or CZT) is a promising candidate for direct X-ray detection under high photon flux with energies in the range of 30keV to 100keV. In this collaboration work between IMEM-CNR and ESRF, the optoelectronic and transport properties of Redlen high-flux CdZnTe (HF-CZT) single crystals with electroless gold and sputtered platinum electrodes are studied. We report low leakage current under dark conditions (6nA/cm² at 5kV/cm), good linearity with moderate to high incident flux (10⁷ to 10¹⁰ photons.mm⁻².s⁻¹), good stability up to 10⁺¹¹photons.mm⁻².s⁻¹, and reduced transient phenomena (stabilization time, afterglow and polarization effects) as compared to standard CdTe material.

Introduction

4th Generation Synchrotron Light Sources such as the Extremely Brilliant Source (EBS) of the ESRF [1], have lead to an increased need for direct X-ray detection under high photon flux with energies ranging from 30keV to 100keV. For these applications, the high-flux CdZnTe (HF-CZT) material developed by Redlen is a promising candidate as it limits the polarizing phenomena observed in standard CZT under high photon flux [2-3]. However, the gold electroless blocking contacts commonly used to achieve low leakage current in standard CZT lead to much higher leakage current in HF-CZT [4]. This work results from a collaboration between IMEM-CNR and ESRF. The objectives of this joint work were, first, to develop optimized electrodes to reduce the leakage current of HF-CZT, and then, to evaluate the capabilities of the optimized samples under high photon fluxes.

2 Methods: HF-CZT with optimized electrodes

IMEM-CNR process: Au electroless and Pt sputtered electrodes deposited onto polished Redlen HF-CZT single crystals.

4 Behavior under X-ray irradiation

A. Moderate to high flux: 3×10⁺⁷-8×10⁺⁹ photons.mm⁻².s⁻¹

Measurements acquired on BM05, at 20keV, V=-1000V.

Left: pulsed irradiation of sample 2 for increasing fluxes. Right: average absolute intensity of sample 2 as a function of incident flux.

Good stability and linearity under moderate to high flux.

B. High to very high flux: 2×10⁺⁹-1×10⁺¹² photons.mm⁻².s⁻¹

Measurements acquired on ID19, at 19keV, V=-500V.

3 Dark conditions

For both samples, J_{dark} =6nA/cm² when V=-5kV/cm and T=20°C. This is a 4 orders of magnitude improvement as compared with other electrode configurations [4]. Both samples exhibited nonideal Schottky characteristics: low reverse current lower and linear reverse characteristics. Using the thermionic model, the height of the Schottky barrier was estimated to be $\Phi_{\rm B}$ =0.59eV regardless of the bias voltage.

Above 10⁺¹¹ ph.mm⁻².s⁻¹ the I-V shape is deformed and an hysteresis appears.

5 Afterglow

At 1s, the afterglow is below 0.5% ≧ of the photocurrent regardless of the incident flux. This is at least a 2 $\frac{1}{10}$ orders of magnitude improvement 4 10-11 compared with standard CZT and GaAs.

Conclusion 6

Afterglow 1s after irradiation compared with photocurrent.

- Characterization of Redlen HF-CZT with optimized electrodes
- Low leakage current achieved with Au/CZT/Pt and Pt/CZT/Pt configurations (6nA/cm² @ -5kV/cm and 20°C)
- Good stability for fluxes up to 10⁺¹¹ ph.mm⁻².s⁻¹ and good linearity for 10⁺⁷-10⁺¹⁰ ph.mm⁻².s⁻¹ flux range.
- Low afterglow compared with CdTe and GaAs.

[1] P. Raimondi, 'ESRF-EBS: The Extremely Brilliant Source Project', Synchrotron Radiat. News, vol. 29, no. 6, pp. 8–15, Nov. 2016, doi: 10.1080/08940886.2016.1244462. [2] B. Thomas et al., 'Characterisation of Redlen high-flux CdZnTe', J. Inst., vol. 12, pp. C12045–C12045, Dec. 2017, doi: 10.1088/1748-0221/12/12/C12045. [3] S. Tsigaridas et al., 'Characterisation of pixelated CdZnTe sensors using MAXIPIX', J. Inst., vol. 14, no. 12, pp. C12009–C12009, Dec. 2019, doi: 10.1088/1748-0221/14/12/C12009. [4] M. Bettelli et al., 'Low leakage currents contacts for High-Flux CdZnTe', presented at the IEEE-RTSD-2021, Oct. 2021.

ESRF – The European Synchrotron – 71 Avenue des Martyrs, Grenoble, FRANCE - Tel +33 (0)4 76 88 20 00