

M. Porro iWoRiD 2022

The DSSC soft X-ray Detectors with Mega-frame Readout Capability for the European XFEL

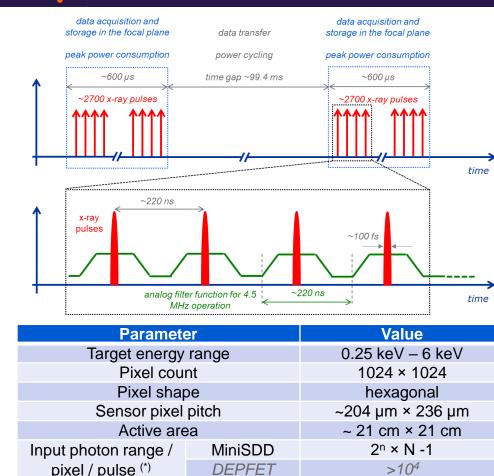
Matteo Porro on behalf of the DSSC Collaboration

23rd International Workshop on Radiation Imaging Detectors Riva del Garda, Italy

Sensors I, 29.06.2022

<u>M. Porro^{1,9}</u>, L. Andricek², S. Aschauer³, A. Castoldi^{4,5}, M. Donato¹, J. Engelke¹, F. Erdinger⁷, C. Fiorini^{4,5}, P. Fischer⁷, H. Graafsma⁸, A. Grande⁴, C. Guazzoni^{4,5}, K. Hansen⁸, S. Hauf, P. Kalavakuru⁸, H. Klaer⁹, M. Kirchgessner⁷, A. Kugel⁷, M. Kuster¹, P. Lechner², D. Lomidze¹, S. Maffessanti⁸, M. Manghisoni⁶, S. Nidhi⁷, V. Re⁶, C. Reckleben⁸, E. Riceputi⁶, R. Richter², A. Samartsev¹, J. Soldat⁸, L. Strueder³, M. Turcato¹, G. Weidenspointner¹, C. Wunderer⁸

- 1) European XFEL GmbH, Schenefeld, Germany
- 2) MPG Halbleiterlabor, Muenchen, Germany
- 3) PNSensor GmbH, Muenchen, Germany
- 4) Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milano, Italy
- 5) Sezione di Milano, Italian National Institute of Nuclear Physics (INFN), Milano, Italy
- 6) Dipartimento di ingegneria industriale, Università di Bergamo, Bergamo, Italy
- 7) Zentrales Institut für Technische Informatik, Universitaet Heidelberg, Heidelberg, Germany
- 8) Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- 9) Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172 Venezia, Italy


M. Porro iWoRiD 2022

P.I.: M. Porro

DSSC Detector System Overview 1/2

MiniSDD

DEPFET

Achievable noise

Peak frame rate

Stored frames per X-ray train

Average / peak data rate

Average power consumption

Operating temperature

~ 60 e- r.m.s.

~ 10 e- r.m.s.

4.5 MHz

800

134/144 Gbit / s

~ 260 W -20° C optimum, room T

possible

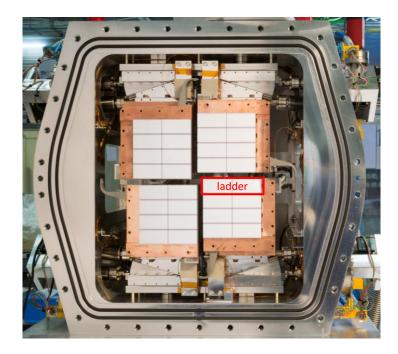
DSSC

- > 256 Readout ASICs 64 x64
 Sensors:
 > MiniSDD arrays 1st camera
 > DEPFET arrays 2nd camera
 - Readout concept
 - Full parallel readout

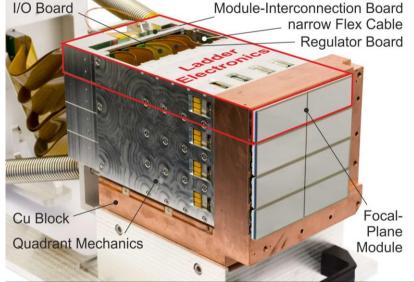
4 quadrants (512 x 512)

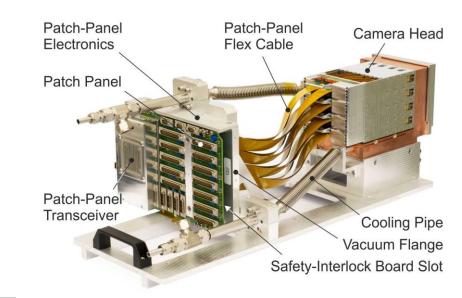
16 ladders (512 x 128)

32 monolithic sensors 128x256

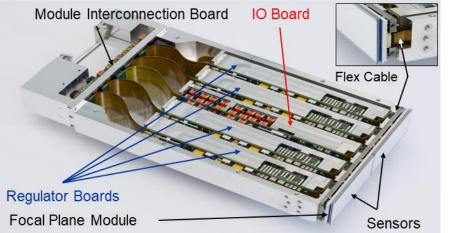

- In pixel analog to digital conversion
- In pixel digital storage (800 frames) with the possibility to overwrite non-valid frames (VETO)
- Output average data rate: 134.4 Gbit/s

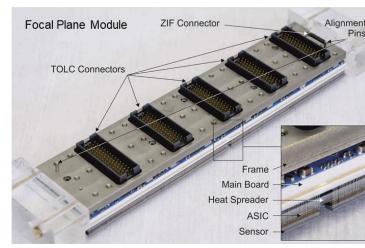
1 Megapixel camera 4.5 MHz peak frame rate

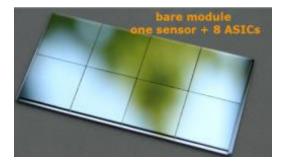

- Power cycling
 - > The camera is fully powered only during X-ray arrival
 - ➢ total Power Dissipation 263 W (250 µW per Pixel)
 - Coolant Load in Vacuum 149 W (142 µW per Pixel)


M. Porro iWoRiD 2022

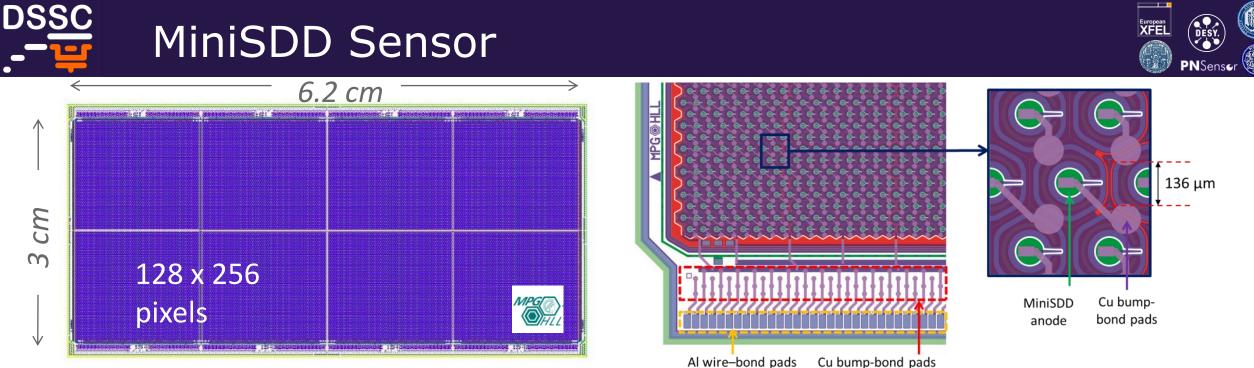
DSSC Detector System Overview 2/2




DSSC



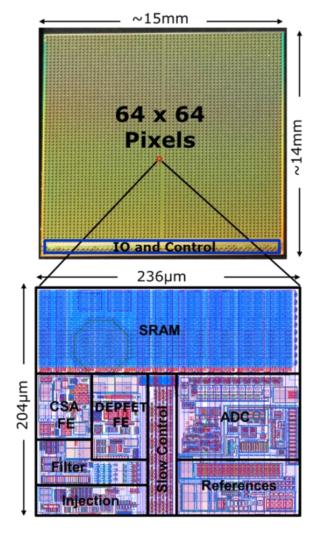
European XFEL



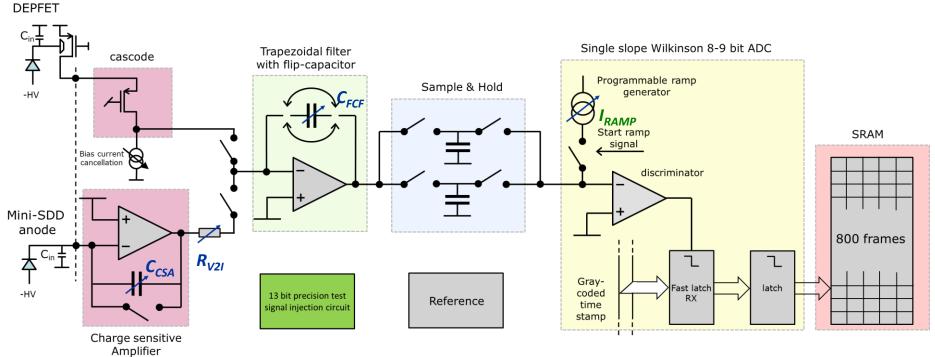
- Movable quadrants
- "service position' in the pic
- Total active area ~ 505 cm²
- Minimum insensitive area ~15%

M. Porro iWoRiD 2022

- Large area monolithic Mini Silicon Drift Detector Arrays produced at the Semiconductor Laboratory of the Max Planck Society (MPI-HLL)
 - > 128 x 256 hexagonal pixels; hexagon side 136 μm; pixel pitches 204 x 236 μm
 - ➢ 450 µm thickness
 - passive collecting anode
 - 1 Alu layer, Cu layer
- Every pixel is bumped to the input of one CSA on the readout ASIC
 - the system is linear
 - Energy range and dynamic range are given by the gain of the ASIC and the ADC resolution (8/9 bit)


iWoRiD 2022

Full Format Readout ASIC

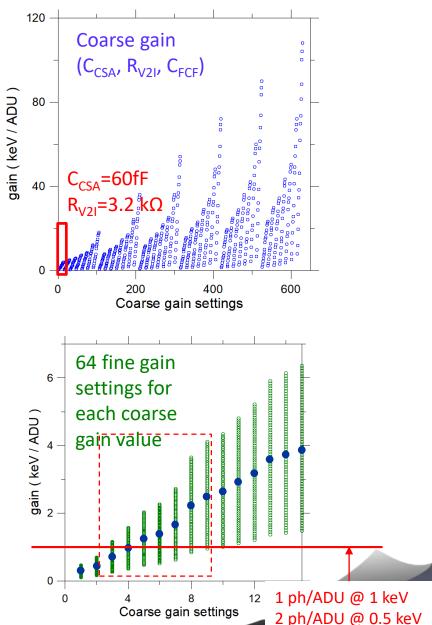

6

M. Porro iWoRiD 2022

DSSC

130 nm CMOS Process with C4 bumps

- Gain and offset can be adjusted pixel-wise:
 - > 11 bits of coarse gain setting for ph. energy and input range selection
 - > 6 bits of gain fine trimming (nominal accuracy 2%)
 - ➤ 4 bits for offset trimming (1.5 LSB range with 8% of granularity)

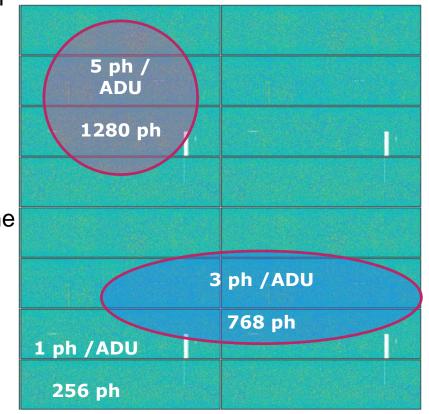

Pixel-wise coarse gain parameters Pixel-wise fine gain trimming keV $\frac{keV}{ADU} \propto C_{CSA} \cdot R_{V2I} \cdot C_{FCF} \cdot \frac{1}{t_{filt}} \cdot \frac{1}{C_{S\&H}}$ I_{ramp} f_{clock}

Fine Gain Trimming and Energy Range

- pixel-wise coarse gain settings make it possible
 - to operate with photons of different energies
 - to define the input dynamic range, associating a defined number of photons to a single ADU
- Pixel wise fine-gain trimming is needed

DSSC

- > To equalize the gain dispersion over the pixels of the matrix
- > To have a precise association of number of photons and ADUs
- Pixel-wise offset trimming is needed to place the signal produced by one photon in the middle of one ADU (minimization of error count rate)
- The overall gain settings are overlapping and have a granularity <1%</p>
- Possible to define precisely the gain for any arbitrary energy for 0.5 keV ≤ E_{ph} ≤ 10 keV
- It is possible to set different gains in different regions of the detector



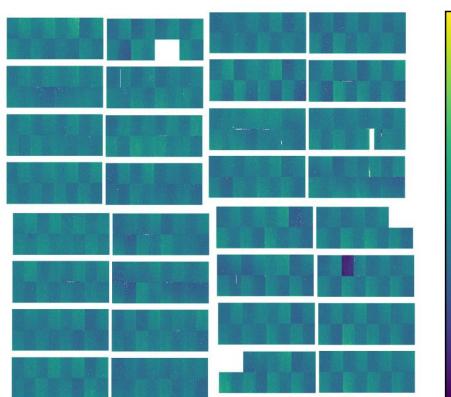
Fine Gain Trimming and Energy Range

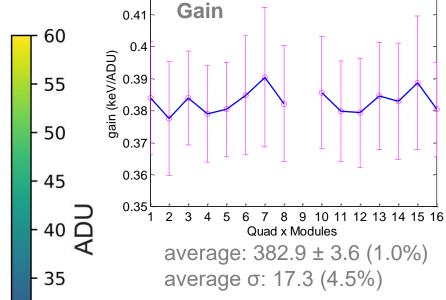
- pixel-wise coarse gain settings make it possible
 - to operate with photons of **different energies** \succ
 - to **define the input dynamic range**, associating a defined number of \geq photons to a single ADU
- Pixel wise **fine-gain trimming** is needed

DSSC

- To equalize the gain dispersion over the pixels of the matrix \geq
- To have a precise association of number of photons and ADUs \geq
- Pixel-wise offset trimming is needed to place the signal produced by one photon in the middle of one ADU (minimization of error count rate)
- The overall gain settings are **overlapping and have a granularity <1%**
- Possible to define precisely the gain for any arbitrary energy for $0.5 \text{ keV} \le E_{\text{ph}} \le 10 \text{ keV}$
- It is possible to set **different gains in different regions** of the detector

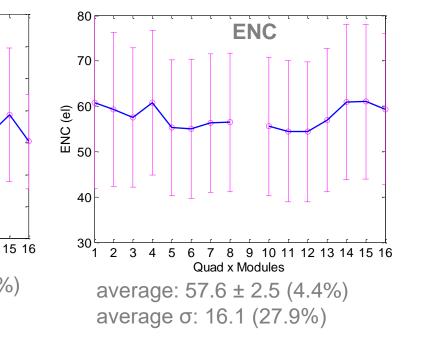
iWoRiD 2022


European XFEL


DSSC 1 Megapixel Camera

9

M. Porro iWoRiD 2<u>022</u>



0.42

- 30

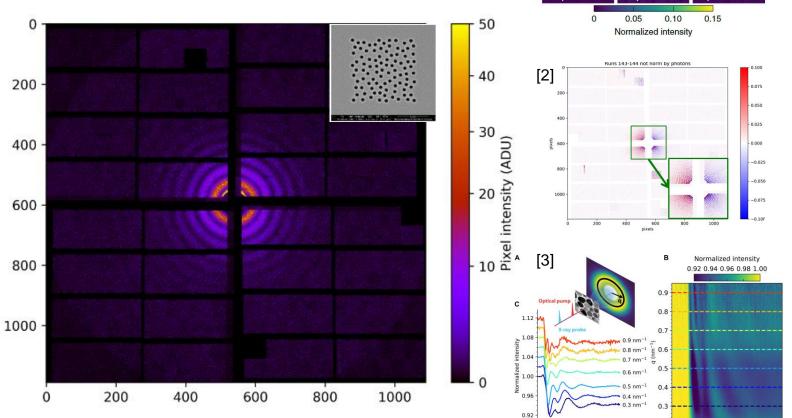
- 25

L 20

- Failure Rate: 3 ASICs out of 256 are concerned (< 2 %)
- Camera calibration @XFEL with pulsed X-ray source PulXar
- Average gain ~400 eV/ADU (un-trimmed) and ENC ~58 e- @
 4.5 MHz
- Good uniformity for the 16 ladders

Dark-Image Test

- w/o active Cooling at RT
- default Gain/Offset Settings


Commissioning & Users' Experiments

- Installation in May 2019 @ Spectroscopy and Coherent Scattering (SCS) Instrument
- First user experiment May 28, 2019
- Since installation (to Dec 2021):

DSSC

- ✓ **17** user experiments at SCS:
 - 8 Time resolved scattering
 - 7 Time resolved XAS
 - 2 Time resolved Holography
- DSSC commissioned and installed at Small Quantum Systems (SQS) Instrument in 2021
 - ✓ First experiment performed: "Highrepetition rate 3D X-ray imaging of single proteins", PI: F. Maia, August 2021

Single-shot diffraction image of pinholes with **707 eV** photons @ **4.5 MHz**

[1]

0.1 nm

XFEL

10 15

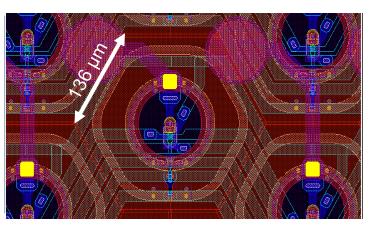
10

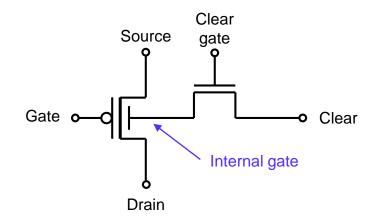
M. Porro

iWoRiD 2022

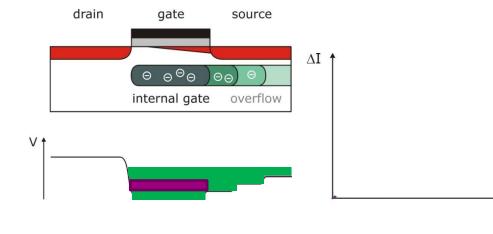
[1] Büttner, F; *et al.* Observation of fluctuation-mediated picosecond nucleation of a topological phase. *Nat. Mater.* 20, 30–37 (2021). doi:10.1038/s41563-020-00807-1
 [2] Hagström, N. Z.; *et al.* Megahertz-rate Ultrafast X-ray Scattering and Holographic Imaging at the European XFEL. *arXiv* (2022). doi:10.48550/arXiv.2201.06350
 [3] Turenne, D.; et al. Nonequilibrium Sub–10 Nm Spin-Wave Soliton Formation in FePt Nanoparticles. *Sci. Adv.* 2022, 8, eabn0523. doi:10.1126/sciadv.abn0523

Towards the DEPFET 1 megapixel camera



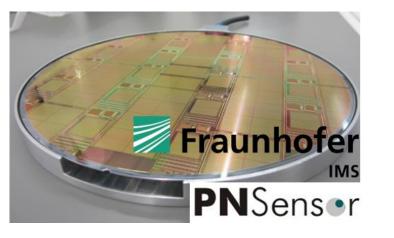


- In the second DSSC camera the MiniSDD sensors will be replaced by DEPFET arrays
 - Fully compatible ladder electronics, additional components installed for sensor operation
 - ASIC includes DEPFET FE
- Sensors are produced in a CMOS foundry (IMS) and at PNSensors
 - 8 inch wafers
 - ➢ 750 µm thickness
 - <400 V depletion voltage</p>
- DEPFETs are active pixels that provide a non linear response
 - Low noise for single photon detection
 - High dynamic range
- The DEPFET arrays are compatible with the existing DSSC system
- Common-source configuration, I_{DRAIN} readout


Lechner, P.; et al. DEPFET active pixel sensor with non-linear amplification, 2011 IEEE Nuclear Science Symposium Conference Record, 2011, pp. 563-568, doi:10.1109/NSSMIC.2011.6154112.

Aschauer, S.; et al. First Results on DEPFET Active Pixel Sensors Fabricated in a CMOS Foundry - a Promising Approach for New Detector Development and Scientific Instrumentation. J. Inst. 2017, 12, P11013–P11013. doi:10.1088/1748-0221/12/11/p11013

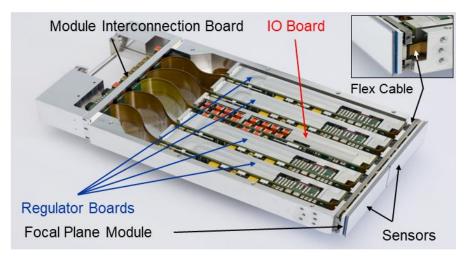
DEPFET Active Pixel

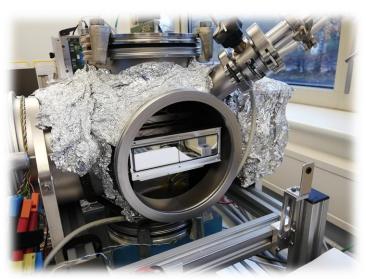


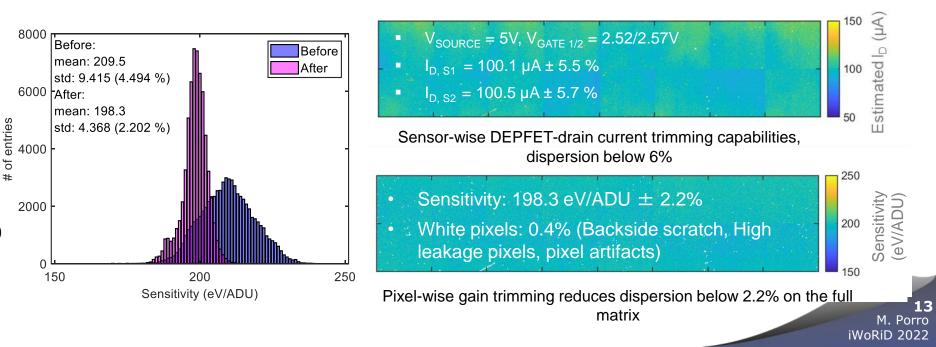
 Q_{sig}

12 M. Porro iWoRiD 2022

DEPFET-ladder prototype: linear range

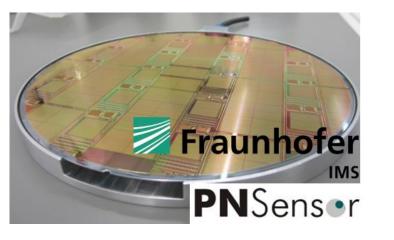




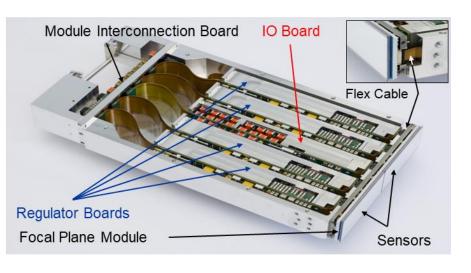

DSSC

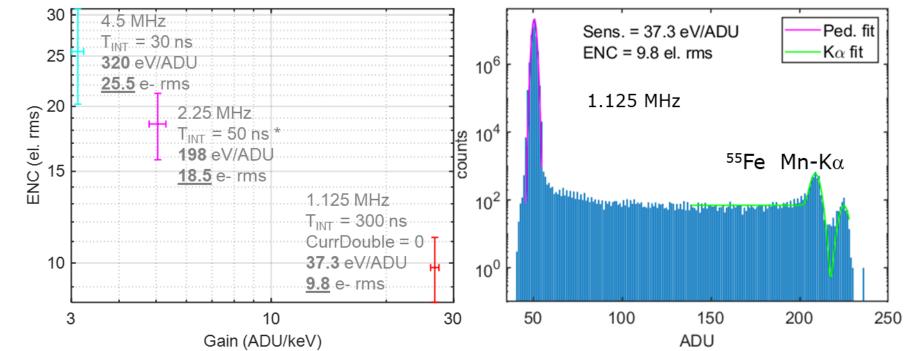
1st prototype characterization in the linear range with labsetup at DESY

- 100 µA/pixel <u>average</u> DEPFETbias current
- ENC 18 e- rms with T_{int} = 50 ns (2.25 MHz), 200 eV/ADU
- Down to 9.8 e- rms with T_{int} = 300 ns (1.125 MHz operation), 37.3 eV/ADU
- Near room-temperature conditions



DEPFET-ladder prototype: linear range



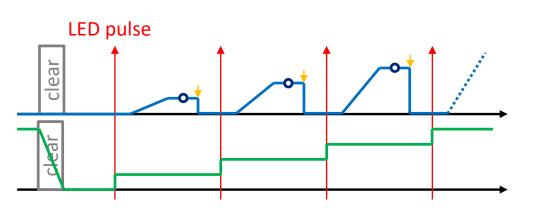


DSSC

1st prototype characterization in the linear range with labsetup at DESY

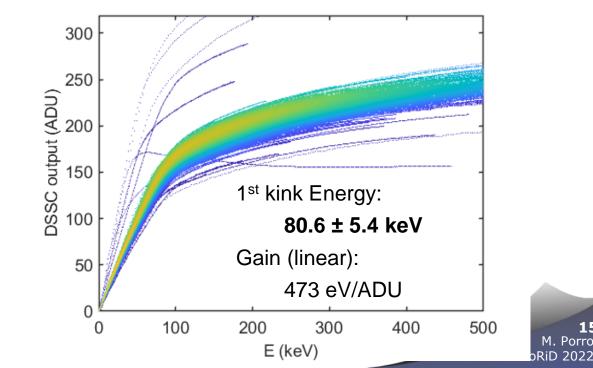
- 100 µA/pixel <u>average</u> DEPFETbias current
- ENC 18 e- rms with T_{int} = 50 ns (2.25 MHz), 200 eV/ADU
- Down to **9.8 e- rms** with T_{int} = 300 ns (1.125 MHz operation), 37.3 eV/ADU
- Near room-temperature conditions

DEPFET-ladder prototype: *NL curve*


Non linear characteristics evaluation

- 150 nm thick Al layer on entrance window
- laser pulser: 905 nm, 25 W

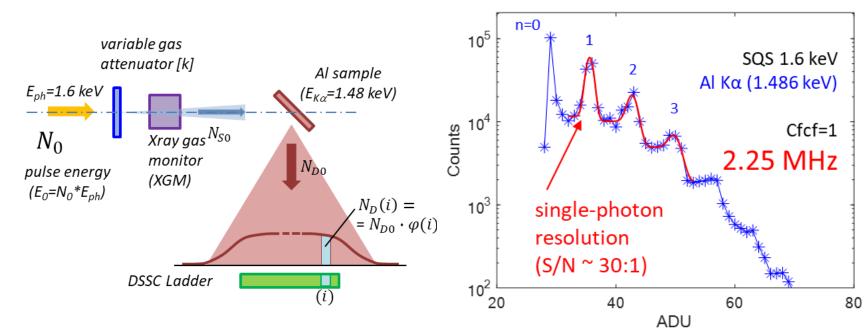
DSSC

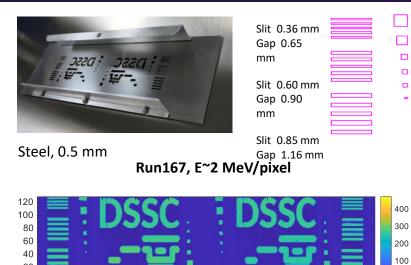

- Integrating charge into DEPFET internal gate, no clear between acquisition cycles
- Curve scan with 400 pulses in singe integration mode
- 50 ns integration time
- Dynamic range of several thousands 1 keV photons

DEPFET signal current ADC sampling point Filter output FE reset

European XFEL

15

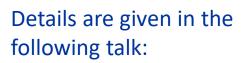

DEPFET-ladder prototype: beamline tests



- 50 ns integration time, <u>2.25 MHz</u> operation (beam at 1.1MHz)
- Al fluorescence (1.486 keV)

DSSC

- Single photon resolution with $S/N \sim 30$
- Near room temperature operation


200

150

250

100

50

350

400

450

500

300

A. Castoldi, "Qualification and Modeling of the Non-Linear Response of the First Large-Area DEPFET Pixel Sensors with Internal Signal Compression"

> **16** M. Porro iWoRiD 2022

DESY.

2.5 mm

2 mm

□ 1.1 mm

□ 1. mm

0.750 mm

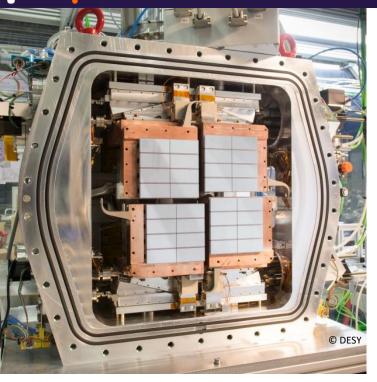
• 0.373 mm

European XFEL

iWoRiD 2022

- The first 4.5 MHz 1 M-Pixel MiniSDD-based DSSC camera has been completed and successfully installed at the Spectroscopy and Coherent scattering (SCS) and the Small Quantum Systems (SQS) scientific instruments of the European XFEL
- The performance figures of the detector system are in excellent agreement with expectations and confirm the results obtained on the prototype module
- The second 1-Mpixel camera will be based on CMOS-DEPFET active pixel sensors that allow single photon detection and high dynamic range simultaneously. The camera will be available in the first half of 2023
- First operation of a CMOS-DEPFET ladder confirms the expected improvements given by the DEPFET technology
- ENC can be as low as to 9.8 e- rms at 1.1 MHz
- Dynamic range is of several thousands 1 keV photons

18 M. Porro iWoRiD 2022



Thank you for your attention

Camera Performance: Power Consumption

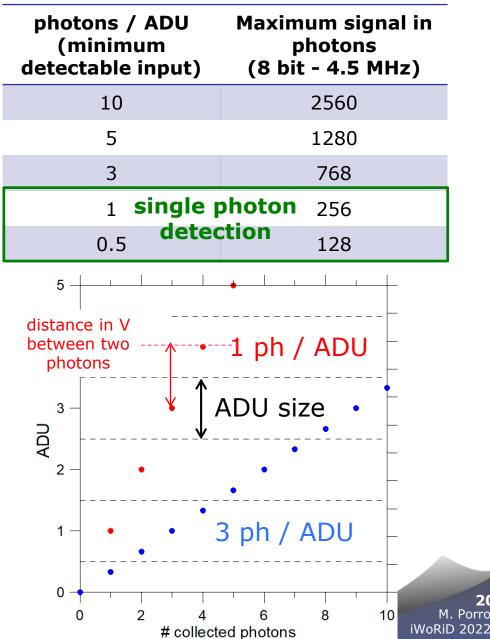
19 M. Porro iWoRiD 2022

DSSC

			Q1	Q2	Q3	Q4	Camera	
	IOB		12,42	12,44	12,38	12,21	49,45	Ladder Electronics:
Quadrant	RB		9,42	9,05	9,21	8,99	36,66	86 W (33%)
	FPM	MB	10,09	10,07	10,07	10,07	40,31	Focal Plane: 63 W (24%)
		ASIC	5,30	4,98	5,12	4,84	20,25	
		Sensor	0,60	0,61	0,61	0,52	2,35	
	F	р	2,65	2,54	2,61	2,56	10,36	
Periphery	РРТ		24,71	24,42	24,36	24,34	97,82	Periphery: 114 W (43%)
	SIB		1,41	1,35	1,34	1,37	5,47	
	1	TOTAL	66,62	65,45	65,69	64,90	262,66	
	data tak	ing ~600 µ		Power cycli	ng~99.4 m	s	↑ ↑↑ _/	

- Power Cycling: total Power Dissipation 263 W (250 µW per Pixel)
- Coolant Load in Vacuum 149 W (142 µW per Pixel)
- In Agreement with Calculations & Expectations

Gain Settings & Input Dynamic Range

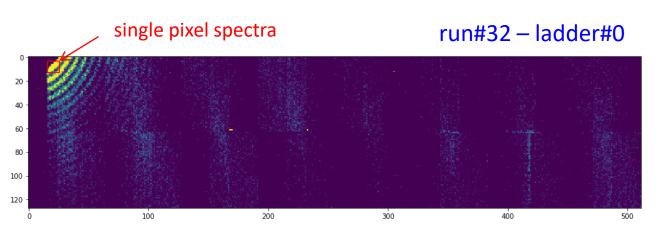


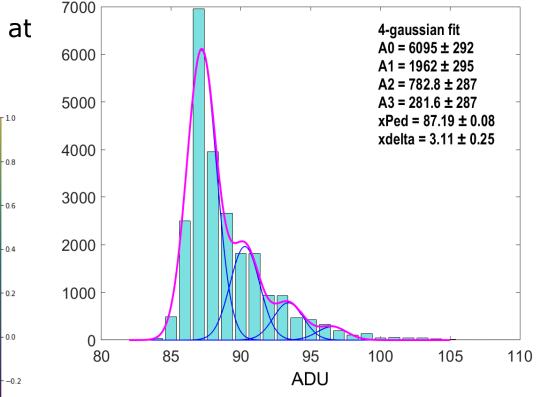
20

- pixel-wise coarse gain settings make it possible
 - to operate with photons of **different energies** \geq
 - to **define the input dynamic range**, associating \succ a defined number of photons to a single ADU
- Pixel wise **fine-gain trimming** is needed

DSSC

- To equalize the gain dispersion over the pixels of the matrix
- To have a precise association of number of photons and ADUs
- Pixel-wise **offset trimming** is needed to place the signal produced by one photon in the middle of one ADU (minimization of error count rate)





Results are preliminary

DSSC

- photon energy 707eV, 133 pulses/train
- low photon multiplicity on DSSC, acquisitions done at high gain 3 bin/ph (i.e. 0.236 keV/ADU)
- DSSC acquiring at 4.5MHz, 400 frames/train

- 4-gaussian fit with free amplitudes (all sigma's fixed at Pedestal sigma)
- delta between centroids 3.11± 0.25 ADU, compatible with calibration (3 ADU)
- amplitudes nicely follow Poisson (λ=0.38)

Spectrum of one pixel - 24000 frames

21 M. Porro iWoRiD 2022