

Gain, noise, and collection efficiency of GaAs SAM-APDs with staircase structure by means of synchrotron radiation

Colja M.*,1, Cautero M.1, Steinhartová T.2,8, Pilotto A.3,6, Antonelli M.4, Cautero G.4,5, Menk R. H.4,5,7, Arfelli F.4,9, Dal Zilio S.2, Biasiol G.2, Gianoncelli A.5, Bonanni V.5, Palestri P.3, Driussi F.3

- ¹ DIA, University of Trieste, 34127 Trieste, Italy
- ² IOM CNR, Laboratorio TASC, Area Science Park Basovizza, 34149 Trieste, Italy
- ³ DPIA, University of Udine, Udine, Italy
- ⁴ INFN-Trieste, Padriciano, Trieste, Italy
- ⁵ Elettra Sincrotrone Trieste S.C.p.A., Area Science Park Basovizza, 34149 Trieste, Italy
- ⁶ C2N, Université Paris-Saclay, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France
- ⁷ Department of Medical Imaging, University of Saskatchewan, Saskatoon, Canada SK S7N 5A2
- ⁸ Infineon Technologies, Siemensstraße 2, 9500 Villach, Austria 9. DF, University of Trieste, 34127 Trieste, Italy

matija.colja@elettra.eu 28/06/2022

Introduction

- increasing demand for fast and efficient X-ray detectors
- silicon-based detectors widely employed, but are not efficient in hard X-ray range

research of new materials (Ge, compound semiconductors, ...)

we are developing

GaAs SAM-APDs with staircase structure

GaAs SAM-APDs with staircase structure Why GaAs?

	Si	Ge	GaAs
density [g/cm ³]	2.33	5.323	5.32
effective atomic number	14	32	32
electric-breakdown field [V/cm]	3×10 ⁵	1×10 ⁵	4×10 ⁵
electron mobility [cm ² /Vs]	1350	3900	8000
band-gap [eV]	1.12	0.66	1.42

shorter attenuation length

shorter response time

possibility to operate at room temperature

GaAs SAM-APDs with staircase structure Why avalanche?

low fluxes / single photon detection

very weak signals (thousands of electrons)

need for amplification

impact ionization = internal amplification

GaAs SAM-APDs with staircase structure

Why Separate Absorption and Multiplication?

photon absorption in a region with a high electric field = noise contribution

region for photon absorption (with low electric field)
ABSORPTION LAYER

separation is obtained by a highly **doped** layer CHARGE LAYER

region for electrons multiplication (with high electric field) MULTIPLICATION LAYER

GaAs SAM-APDs with staircase structure? Why staircase structure?

multiplication in a region with similar electron/hole ionization coefficients

=
noise contribution

- $\alpha/\beta_{GaAs} \cong 1$ \Rightarrow high noise \odot
- to reduce noise: band-gap engineering

staircase structure (impact ionization of electrons at discrete locations)

[David, J. The staircase photodiode. *Nature Photon* **10**, 364–366 (2016)]

The detector – cross section

The detector – cross section

Characterization with laser

• Eph = 2.33 eV →

no photogeneration in the multiplication layer

- V_{breakdown} = 37 V
- multiplication from 25 V to breakdown

Gain

$M(V) = \frac{I_m^{ph}(V) - I_m^{dark}(V)}{a \cdot e^{b \cdot V}}$

- a and b are extracted from I-V measurements interpolating the initial exponential growth
- $M_{max} = 50$

Excess Noise Factor

$$ENF = \frac{S_i \cdot B}{M^2 \cdot 2q I_{ph} \cdot B}$$

 S_i : measured current spectral density I_{ph} : DC value of photo-current with M=1 B: system bandwidth

• $\alpha/\beta = k \in [0.25, 0.35]$

28/06/2022

Synchrotron radiation measurements

- investigation of recombination in:
 - metal-semiconductor interface
 - absorption region
- TwinMic beamline (Elettra Sincrotrone)
 - o photon energies = [400 eV, 2200 eV]
 - sub-micrometric monochromatic beam

Metal-semiconductor interface (1)

- chemical characterisation (As fluorescence)
- identification of areas not covered by top contact

Metal-semiconductor interface (2)

current measured when the radiation entered:

	through Cr/Au	directly in GaAs		
Energy [eV]	I_m^{Au} [nA]	I_m^{GaAs} [nA]	T_m [%]	T_{th} [%]
940 1090 1500 1705 2010	64.187 ± 0.025 81.903 ± 0.025 232.192 ± 0.025 293.290 ± 0.025 278.579 ± 0.025	119.793 ± 0.025 125.670 ± 0.025 318.681 ± 0.025 378.027 ± 0.025 322.070 ± 0.025	53.58 ± 0.02 65.17 ± 0.02 72.86 ± 0.01 77.58 ± 0.01 86.50 ± 0.01	51.8 ± 0.3 62.0 ± 0.3 79.3 ± 0.2 84.6 ± 0.1 89.1 ± 0.1

measured and theoretical transmissions have a similar trend and their values are comparable

traps and defects at the interface have a small effect in the charge loss

Recombination in absorption region (1)

• 5 energies (940 eV, 1090 eV, 1500 eV, 1705 eV, 2010 eV)

transmittance as a function of depth

carriers produced at different distances from the multiplication layer

- measurements on 4.5 and 15 um-thick devices only
- expected current

$$I_{th}(E_{ph}) = \Phi_0 \cdot \frac{E_{ph}}{E_{e-h}} \cdot q,$$

 Φ_0 : photon flux [photons/s]

E_{ph}: photon energy [eV]

E_{e-h}: average energy to produce e-h

Recombination in absorption region (2)

- no dependence on the attenuation length -> negligible recombination during electron travelling through the absorption region
- variations due to systematic error (reposition of the sample)

Conclusion

- GaAs valid alternative to Si, but careful design required for noise reduction
- ENF can be greatly reduced by band-gap engineering
- negligible effect in charge collection efficiency of:
 - recombination in metal-semiconductor interface
 - recombination in absorption region

