

Diagnostics at pulsed radiation sources using a hyperspectral, high framerate HEXITEC camera system

Frederic Van Assche M. C. Veale, D. Pooley, B. Cline

Diagnostics at pulsed radiation sources using a HEXITEC

Diagnostics at pulsed radiation sources using a HEXITEC Improved measurement of the gadolinium neutron capture emission spectrum

Diagnostics at pulsed radiation sources using a HEXITEC Improved measurement of the gadolinium neutron capture emission spectrum at the ISIS neutron source

Diagnostics at pulsed radiation sources using a HEXITEC

Improved measurement of the gadolinium neutron capture emission spectrum at the ISIS neutron source using a HEXITEC

Introduction & background

Science and Technology Facilities Council

Matt Veale

Principal Detector Scientist HEXITEC

Dan Pooley

Principal Detector Scientist PImMS

Ben Cline

Graduate Detector Scientist

Frederic Van Assche

Readout & Acquisition

- Naturally occurring element
- ...with **highest interaction probability** for thermal neutrons
- Neutron capture gives prompt photon and electrons

- Naturally occurring element
- ...with **highest interaction probability** for thermal neutrons
- Neutron capture gives prompt photon and electrons

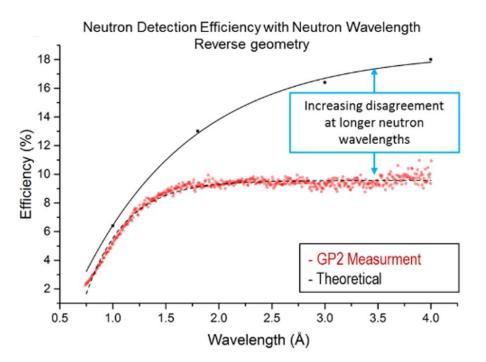
Excellent neutron converter

GP2 neutron camera

- PImMS-2 based system
- CMOS imager for ToF-MS
- Extensively used @ ISIS
- 4 µm Gd layer deposited as converter

Parameter	Value	
Pixel size	$70 \times 70 \ \mu m$	
Pixel number	$324 \times 324 = 104976$	
Active area	22.7 mm × 22.7 mm	
Bit depth (time bins available)	12 bit (maximum 4095)	
Smallest temporal bin width	12.5 ns	
Registers per pixel	4	

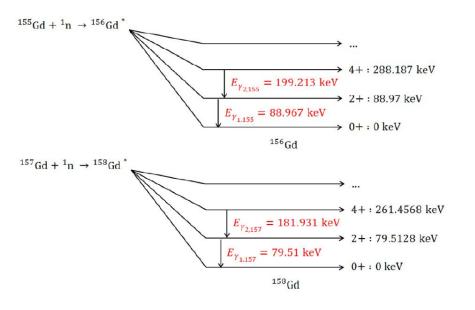
Selected parameters of the PImMS sensor, relevant to ERNR.



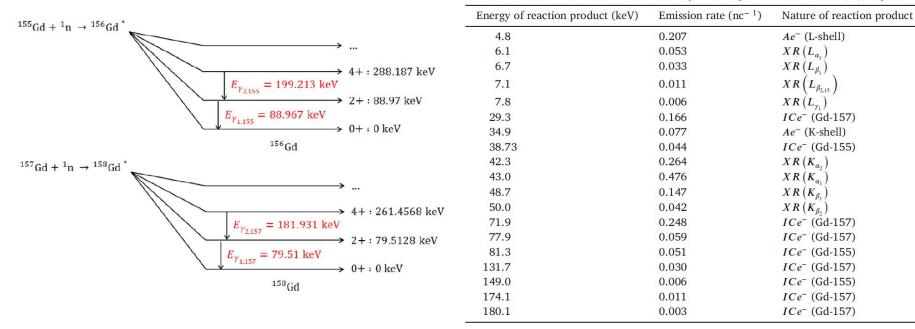
GP2 neutron camera

- PImMS-2 based system
- CMOS imager for ToF-MS
- Extensively used @ ISIS
- 4 µm Gd layer deposited as converter

Parameter	Value	
Pixel size	70 × 70 μm	
Pixel number	$324 \times 324 = 104976$	
Active area	22.7 mm × 22.7 mm	
Bit depth (time bins available)	12 bit (maximum 4095)	
Smallest temporal bin width	12.5 ns	
Registers per pixel	4	


Selected parameters of the PImMS sensor, relevant to ERNR.

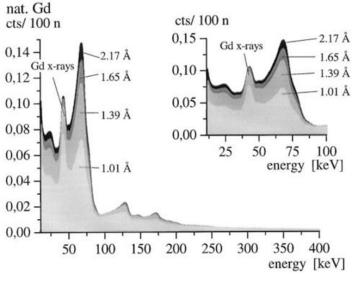
Significant efficiency mismatch



Prominent internal conversion electrons, X rays and Auger electrons after $Gd(n, \gamma)$ capture.

- Theoretical efficiency depends on simulated emissions
- Simulations in turn depend on decades old measurements
- Few more recent measurements, we were confident we could do better

- Theoretical efficiency depends on simulated emissions
- Simulations in turn depend on decades old measurements
- Few more recent measurements, we were confident we could do better


Energy of reaction product (keV)	Emission rate (nc ⁻¹)	Nature of reaction product
4.8	0.207	Ae ⁻ (L-shell)
6.1	0.053	$XR(L_{\alpha_1})$
6.7	0.033	$XR(L_{\beta_1})$
7.1	0.011	$XR\left(L_{\beta_{2,15}}\right)$
7.8	0.006	$XR(L_{\gamma_1})$
29.3	0.166	<i>ICe</i> ⁻ (Gd-157)
34.9	0.077	Ae ⁻ (K-shell)
38.73	0.044	<i>ICe</i> ⁻ (Gd-155)
42.3	0.264	$XR(K_{\alpha_2})$
43.0	0.476	$XR(K_{\alpha_1})$
48.7	0.147	$XR(K_{\beta_1})$
50.0	0.042	$XR(K_{\theta_2})$
71.9	0.248	ICe ⁻ (Gd-157)
77.9	0.059	ICe- (Gd-157)
81.3	0.051	ICe- (Gd-155)
131.7	0.030	ICe ⁻ (Gd-157)
149.0	0.006	ICe- (Gd-155)
174.1	0.011	ICe ⁻ (Gd-157)
180.1	0.003	<i>ICe</i> ⁻ (Gd-157)

Ī

GHENT

UNIVERSITY

Prominent internal conversion electrons, X rays and Auger electrons after $Gd(n, \gamma)$ capture.

G. Bruckner et al., NIM A 1999, 424

Are the simulations wrong?

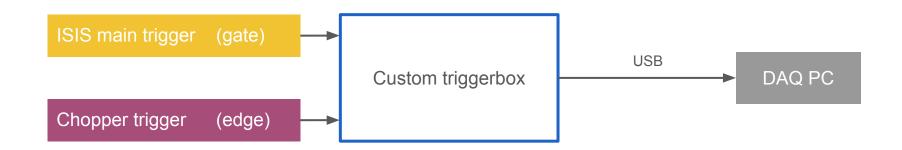
Is it a technical issue?

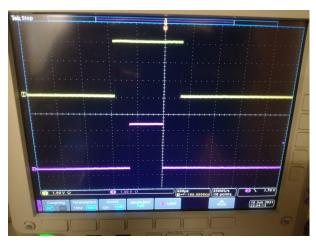
Are the simulations wrong?

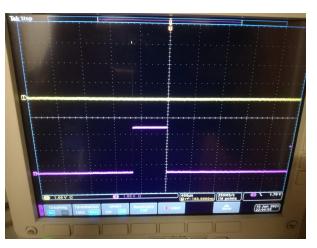
Is it a technical issue?

Better measurements needed!

Technical implementation

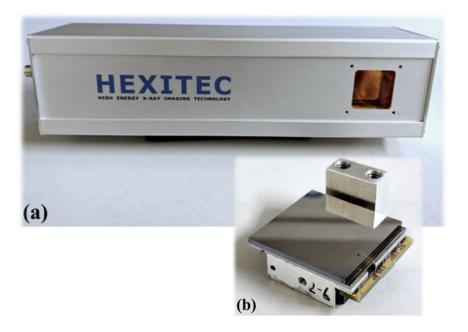

The ISIS neutron source


- Pulsed neutron source:
 - 50 Hz pulses from spallation target
 - Two target stations (TS1 & TS2)
 - Every 5th pulse goes to TS2
- Experiment performed at LoQ instrument @ TS1
- Chopper blocks every other pulse, shows long tail of cold neutrons



Triggering setup

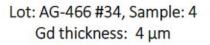
TS2 pulse = ignore

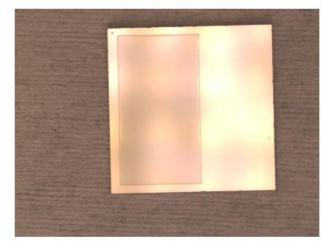

TS1 pulse = capture

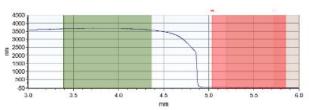
Science and Technology Facilities Council

The HEXITEC detector

- 80 x 80 pixels of 250 µm pitch
- Fully spectroscopic
- 9.6 kHz framerate
- FWHM energy res. of 500 eV with p-type Si
- CdTe, CZT, GaAs:Cr, p-type Si sensors



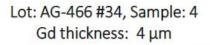


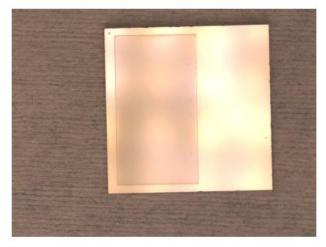


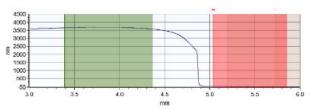
HEXITEC for neutron diagnostics

- GaAs:Cr and p-type Si sensors
- Directly deposited Gd of various thickness
- Read-out at 8.5 kHz (storage limited)
- Placed directly in beam
- Minimal neutron absorber to optimise flux

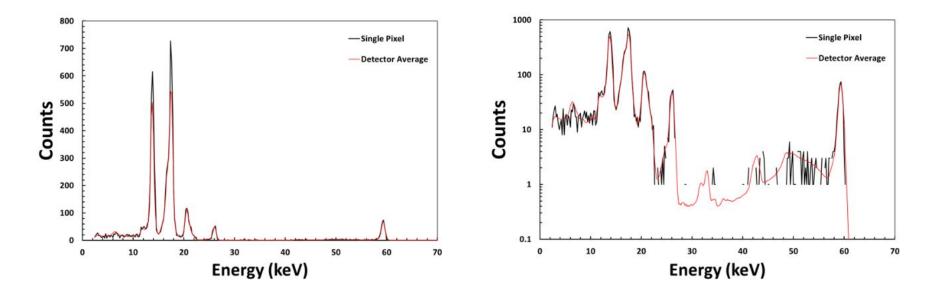
HEXITEC for neutron diagnostics


- GaAs:Cr and p-type Si sensors
- Directly deposited Gd of various thickness
- Read-out at 8.5 kHz (storage limited)
- Placed directly in beam


GHENT


UNIVERSITY

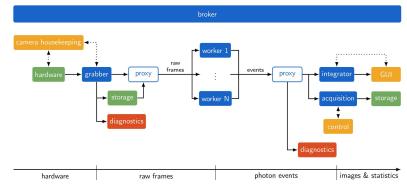
• Minimal neutron absorber to optimise flux



Sensor calibration

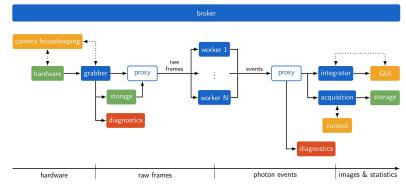
Si sensor ²⁴¹Am spectra

Synchronisation


- HEXITEC readout is GigE Vision based:
 - Supports **Precision Time Protocol** (PTP)
 - Camera synced to master clock of DAQ PC
 - Frames timestamped in hardware to sub-µs accuracy
- Custom triggerbox events retrieved over low-latency USB protocol, timestamped in software on DAQ PC
- Synchronisation verified using pulsed visible light:
 - Trigger event arrives before relevant HEXITEC frame
 - Constant delay, jitter less than one frame

DAQ software

- Based on SpeXIDAQ framework:
 - Written at UGent specifically for hyperspectral X-ray camera readout
 - Unaware of pulsed sources in default config
 - Highly modular, network based components
- Single workstation machine


F. Van Assche et al., Sensors 2021, 21, 563

DAQ software

- Based on SpeXIDAQ framework:
 - Written at UGent specifically for hyperspectral X-ray camera readout
 - Unaware of pulsed sources in default config
 - Highly modular, network based components
- Single workstation machine

F. Van Assche et al., Sensors 2021, 21, 563

Developed custom pulsed mode processing

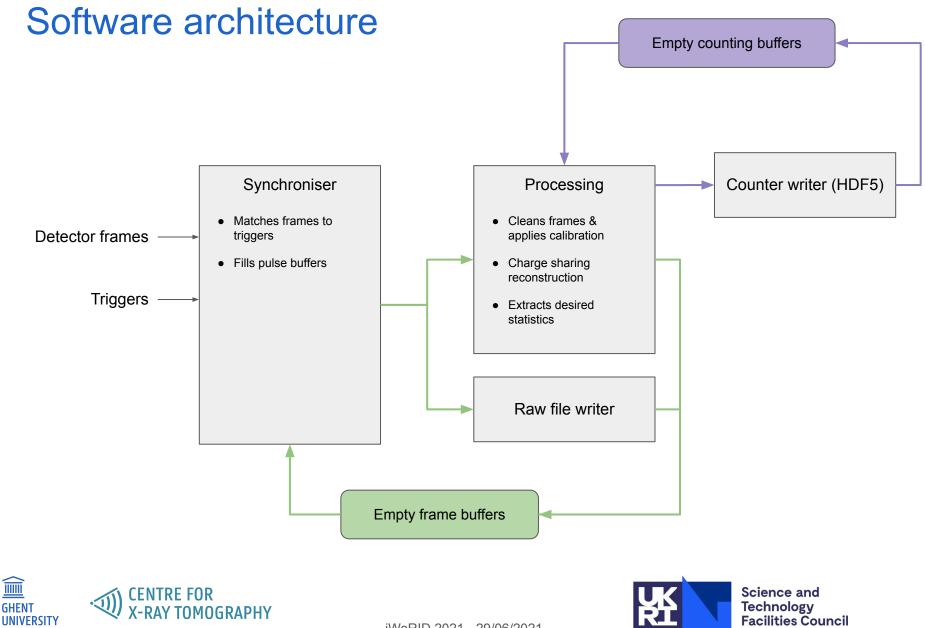
Pulsed mode processing

Principles

- 1. Individual pulses don't matter
- 2. Data integrity is essential don't expect second chances

Pulsed mode processing

Principles


- 1. Individual pulses don't matter
- 2. Data integrity is essential don't expect second chances

Translation to implementation

- Drop pulse if incomplete or corrupted
- Summing together (processed) pulses is acceptable
- Store processed frames for live monitoring
- Store raw detector output for offline analysis
- Frequently open new files for storage

Processed data

Ideally (X, Y, E, t, n) "hypercubes" with hit counts

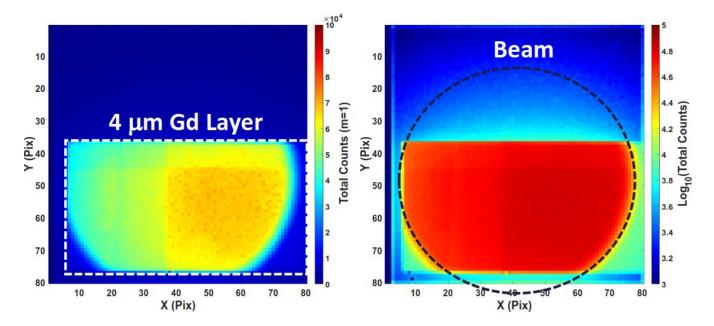
- X and Y: 80 x 80 detector pixels
- *E*: 2000 bins between 0 and 160 keV
- *t*: 320 bins of ~ 0.12 ms each (8.5 kHz and 25 Hz pulses)
- *n*: charge sharing discrimination, event size in px from 1 to 6

Processed data

Ideally (X, Y, E, t, n) "hypercubes" with hit counts

- X and Y: 80 x 80 detector pixels
- *E*: 2000 bins between 0 and 160 keV
- *t*: 320 bins of ~ 0.12 ms each (8.5 kHz and 25 Hz pulses)
- *n*: charge sharing discrimination, event size in px from 1 to 6

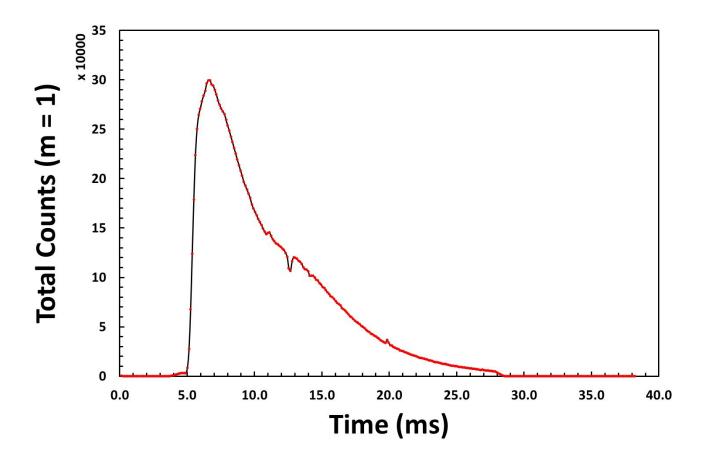
Too expensive: with 16 bit counters 50 Gb required per buffer! Don't forget: raw frames streaming to disk @ almost 1 Gbps too



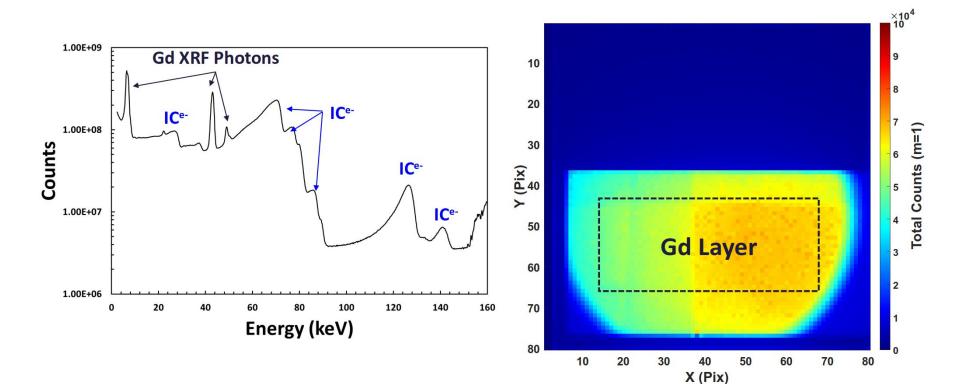
Processed data

Solution: reduce processed output to three maps of lower dimensions:

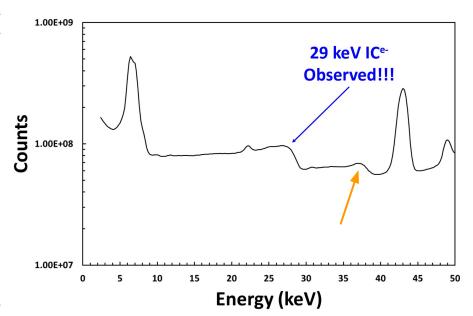
- (*E*, *t*, *n*) of combined events **in beam**, **inside Gd layer**
- (*E*, *t*, *n*) of combined events in beam, **outside** Gd layer
- (*E*, *t*, *n*) of combined events **outside beam**



Tentative results


Excellent alignment of ToF

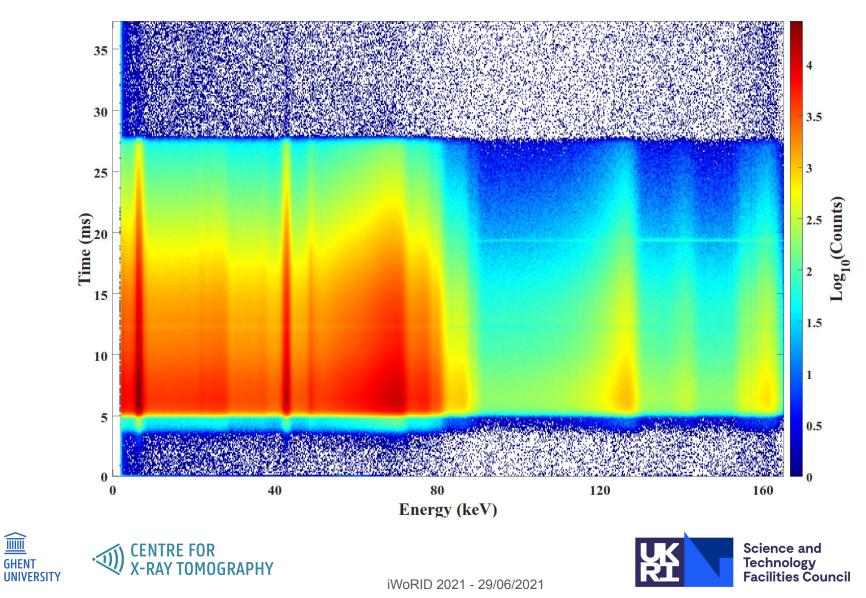
Spectrum for 4 µm Gd layer

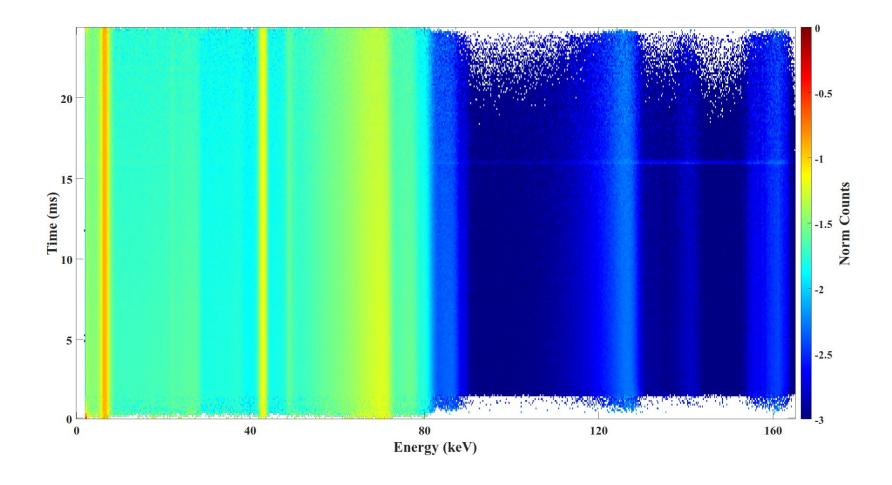


Spectrum for 4 µm Gd layer

Energy of reaction product (keV)	Emission rate (nc^{-1})	Nature of reaction product
4.8	0.207	Ae ⁻ (L-shell)
6.1	0.053	$XR(L_{\alpha_1})$
6.7	0.033	$XR\left(L_{\beta_{1}}\right)$
7.1	0.011	$XR\left(L_{\beta_{2,15}}\right)$
7.8	0.006	$XR(L_{\gamma_1})$
29.3	0.166	<i>ICe</i> ⁻ (Gd-157)
34.9	0.077	Ae ⁻ (K-shell)
38.73	0.044	<i>ICe</i> ⁻ (Gd-155)
42.3	0.264	$XR(K_{\alpha_{\gamma}})$
43.0	0.476	$XR(K_{\alpha_1})$
48.7	0.147	$XR(K_{\beta_1})$
50.0	0.042	$XR(K_{\beta_2})$
71.9	0.248	ICe ⁻ (Gd-157)
77.9	0.059	<i>ICe</i> ⁻ (Gd-157)
81.3	0.051	<i>ICe</i> ⁻ (Gd-155)
131.7	0.030	<i>ICe</i> ⁻ (Gd-157)
149.0	0.006	<i>ICe</i> ⁻ (Gd-155)
174.1	0.011	<i>ICe</i> ⁻ (Gd-157)
180.1	0.003	<i>ICe</i> ⁻ (Gd-157)

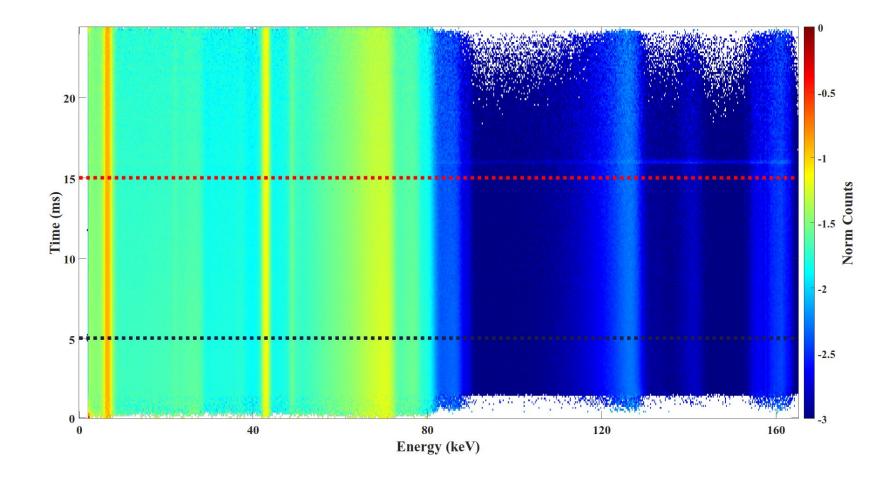
Prominent internal conversion electrons, X rays and Auger electrons after $Gd(n, \gamma)$ capture.

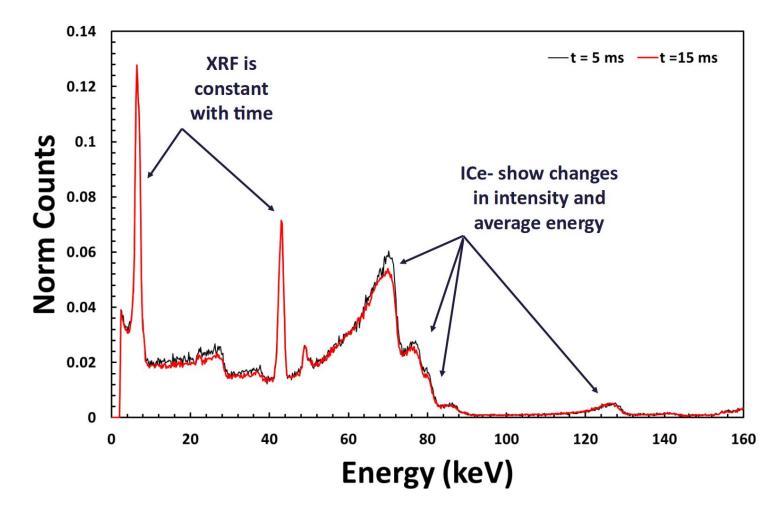


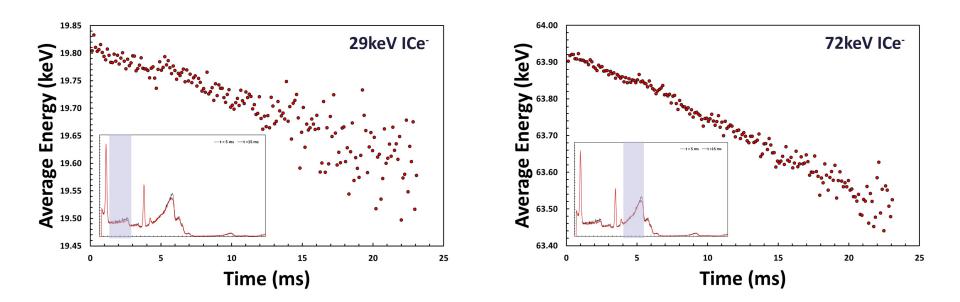

Temporal spectroscopy

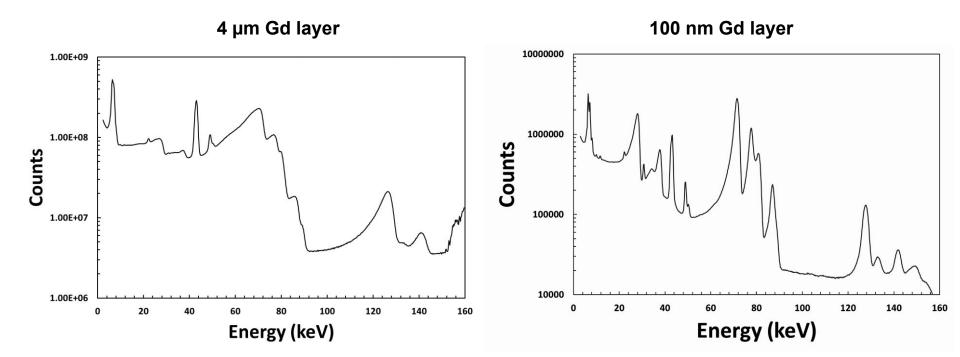
 $\widehat{}$

GHENT


Normalised to XRF lines


Normalised to XRF lines


Behaviour of IC electrons


Behaviour of IC electrons

Even better spectrum with 100 nm Gd

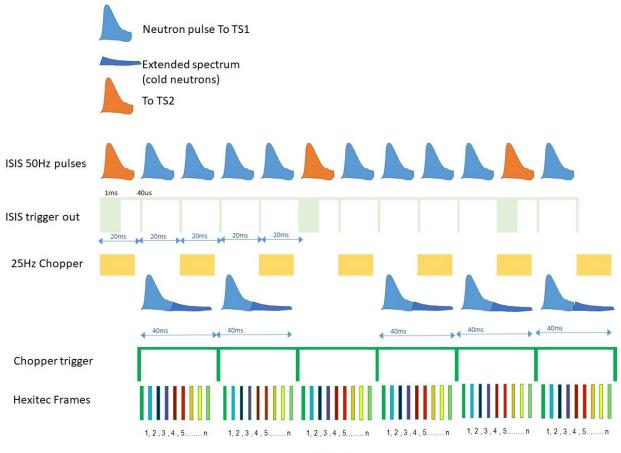
Next steps

- 1. Finish analysis and publish results
- 2. Check how fits with simulations:
 - Branching ratio tweaks?
 - Better input data?
- 3. Resource for detector design: Gd thickness optimisation guidance
- 4. HEXITEC MHz: 100-fold better timing resolution!
 - Talk by Joseph Nobes on Tuesday 12:30
 - Poster by Ben Cline (Monday) & poster by Matt Veale (Wednesday)
- 5. Include measurements in standards databases?

Thank you!

Matthieu N. Boone

Sander Vanheule


Daniel E. Pooley **Ben Cline** Stephen M. King (LoQ Instrument Scientist)

Frederic Van Assche frederic.vanassche@ugent.be Funded by IOF grant F2020/IOF-StarTT/135 and STFC Centre for Instrumentation FEEDER Managed Programme 2018 - 2021

Trigger structure

Throw away!

