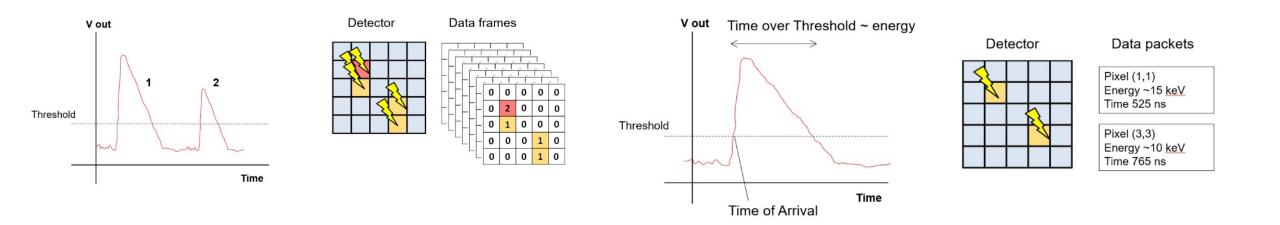
Development of TimePix4 Readout for Experiments at Synchrotrons and FELs

J. Correa, S. Fridman, H. Graafsma, A. Ignatenko, S. Lange, D. Pennicard, S. Smoljanin

June 26-30, 2022

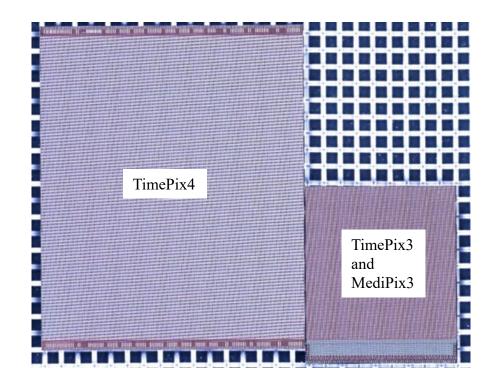
Overview

- Comparison with TimePix3 and MediPix3
- Potential applications of TimePix4
- Single-chip system with high-speed readout
- Long-term plans multi-chip systems


Frame-based & data-driven readout

Frame-based

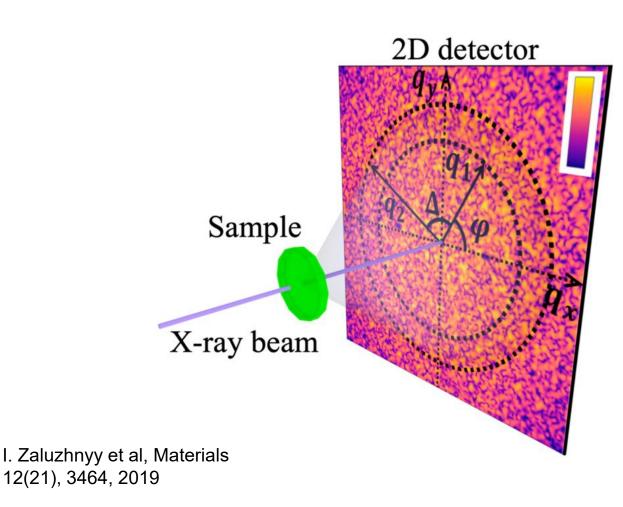
- Single threshold
- Frame rate up to 40 kHz, 8/16 bit depth
- 5×10⁹ hits/mm²/s


Data-driven

- Time of Arrival (ToA) with time resolution up to 200 ps (sensor dependent, ~ 5 ns for X-rays with 300 µm thick Si sensor)
- Time over Threshold (ToT) with ~1 keV resolution
- Max hit rate 2.48×10⁹ hits/s, active area 6.94 cm²

TimePix4 vs MediPix3 and TimePix3

	MediPix3	TimePix3	TimePix4
Tech. node, nm	130	130	65
Year	2013	2014	2019
Pixel size, µm	55	55	55
Pixels	256 × 256	256 × 256	448 × 512
Time resolution	N/A	1.6 ns	195 ps
Readout architecture	Frame-based (sequential or continuous R/W)	Data-driven or frame-based (sequential R/W)	Data-driven or frame-based (sequential or continuous R/W)
Number of sides for tiling	3	3	4

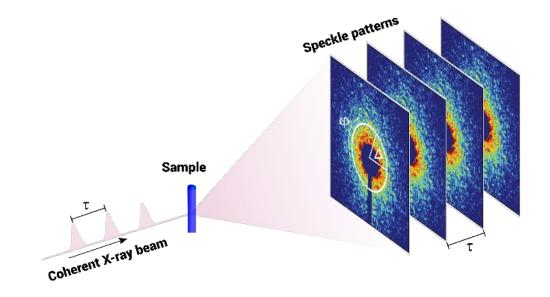


TimePix4 vs TimePix3

			Timepix3 (2013)	Timepix4 (2019)
Technology			130nm – 8 metal	65nm – 10 metal
Pixel Size			55 x 55 μm	55 x 55 μm
Pixel arrangement			3-side buttable	4-side buttable
			256 x 256	512 x 448
Sensitive area			1.98 cm ²	6.94 cm ²
Data driven (Tracking) Frame based	Mode	TOT and TOA		
	Event Packet	48-bit	64-bit	
	Max rate	0.43x10 ⁶ hits/mm ² /s	3.58x10 ⁶ hits/mm ² /s	
	Max Pix rate	1.3 KHz/pixel	10.8 KHz/pixel	
Frame based (Imaging)	Mode	PC (10-bit) and iTOT (14-bit)	CRW: PC (8 or 16-bit)	
	Frame	Zero-suppressed (with pixel addr)	Full Frame (without pixel addr)	
	(iiiiagiiig)	Max count rate	~0.82 x 10 ⁹ hits/mm ² /s	~5 x 10 ⁹ hits/mm²/s
TOT energy resolution		ion	< 2KeV	< 1Kev
TOA binning resolution		tion	1.56ns	195ps
TOA dynamic range			409.6 μs (14-bits @ 40MHz)	1.6384 ms (16-bits @ 40MHz)
Readout bandwidth		h	≤5.12Gb (8x SLVS@640 Mbps)	≤163.84 Gbps (16x @10.24 Gbps)
Target global minimum threshold		num threshold	<500 e ⁻	<500 e ⁻

Existing applications of Medipix3 can benefit from the improved photon counting mode (~ 6 times faster)

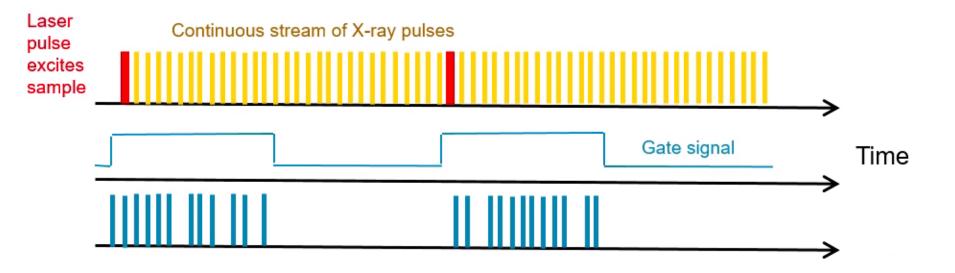
- Small-angle X-ray scattering (SAXS)
- Wide-angle X-ray scattering (WAXS)
- Powder diffraction
- Crystallography



TimePix4 can replace its predecessor TimePix3

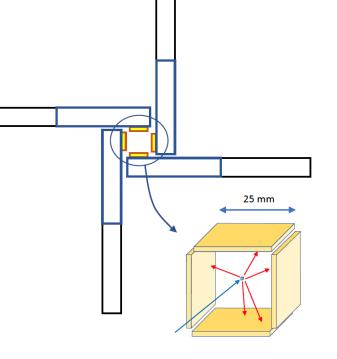
Correlation experiments: X-ray photon correlation spectroscopy (XPCS), X-ray cross-correlation analysis (XCCA)

- aim for increasingly high time resolution with higher frame rates
- small amount of pixels have signal, would be more efficient to timestamp each photon


Time-resolved experiments with single-bunch time resolution (>4 ns) at the PETRA IV Storage Ring Facility

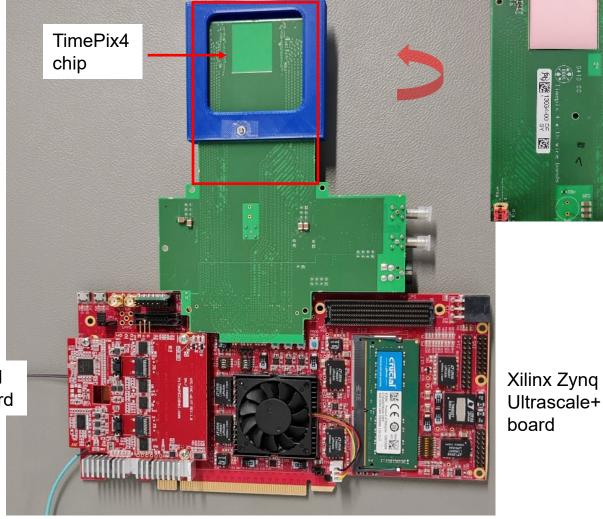
TimePix4 can replace its predecessor TimePix3

Pump-probe diffraction experiments at FELs

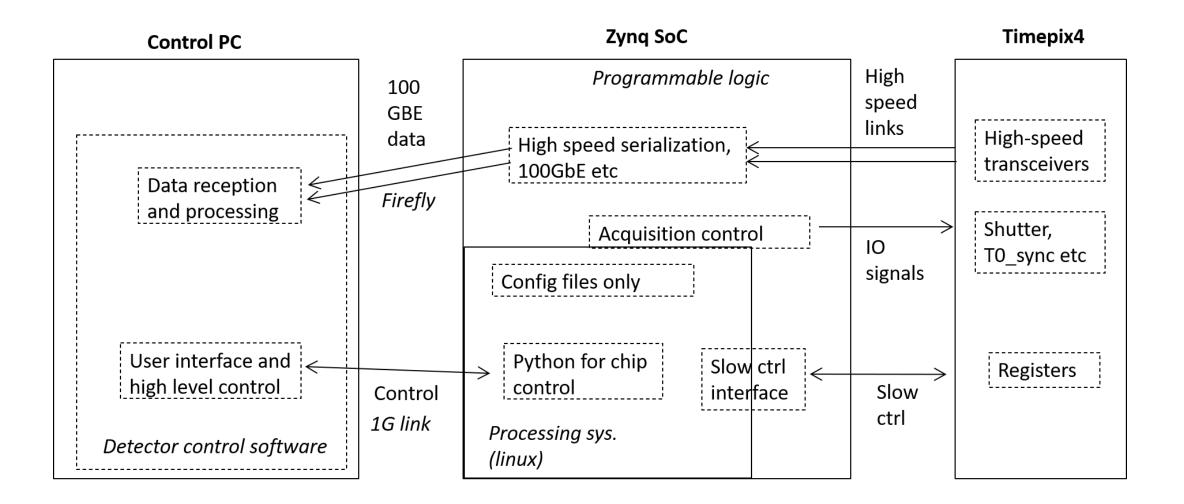

• Timestamping could allow to measure the full time series simultaneously

New applications, e.g. quantum imaging

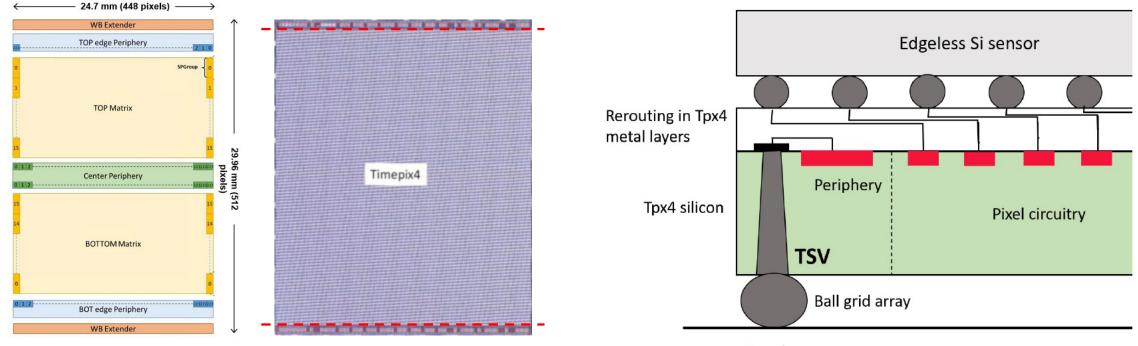
- ~1 keV energy resolution
- High-Z material sensor (e.g. CdTe) to increase quantum efficiency
- Improved timing capability and time resolution
- Coverage of large solid angle


"Correlated X-ray photons for incoherent diffraction imaging" June 28, 15:30

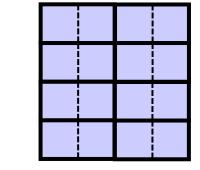
Single-chip system with high-speed readout


Single-chip system development

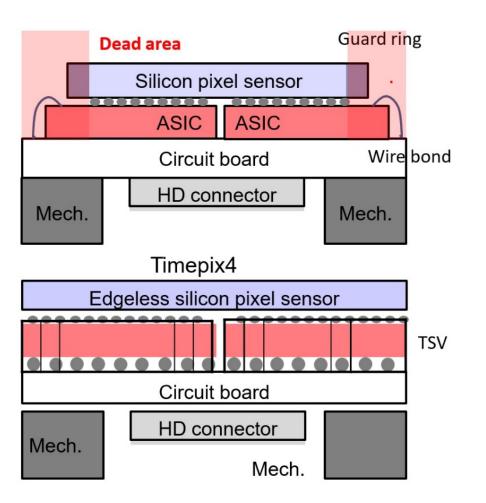
- custom TimePix4 board
- Xilinx Zynq Ultrascale+ board with FPGA fabric
- high-speed readout (up to 160 Gbit/s 16 high-speed links from chip), daughterboard with Firefly optical output


Firefly optical daughterboard

Firmware and software


4-side buttable design with Through Silicon Vias (TSV)

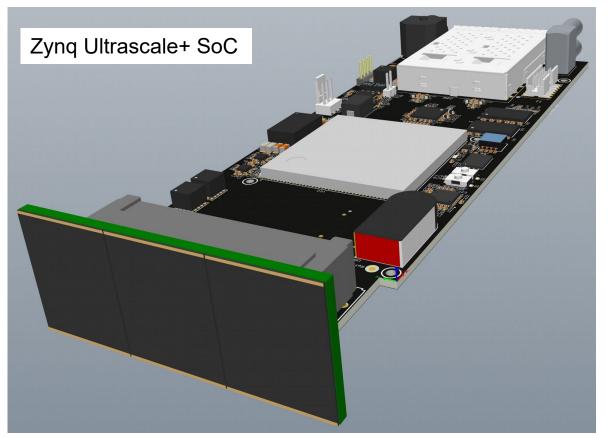
- With TSVs full chip surface is covered with pixels
- Wire bond pads can be diced off



Tilable modules

- With TSVs full chip surface is covered with pixels
 - rerouting in metal layers creates space for periphery
 - improvements of TSV design

Tiled multi-chip detector



Large systems with tilable modules

Need for large continuous detector

- TSV to eliminate wire bonds
- Tilable building block: 3-chip module
- Readout boards with Zync Ultrascale+ SoC, 3×100 GbE readout

$4 \times 100 \text{ GbE}$ cages

3-chip detector head 1344×512 pixels

- Detectors with TimePix4 chip are able to replace detectors carrying MediPix3 and TimePix3 in their existing applications
- Improved time resolution can be beneficial for some new applications for detectors with TimePix4 chip
- Single-chip system with high-speed readout is under development
- Long-term plans multi-chip systems

Thank you for your attention!