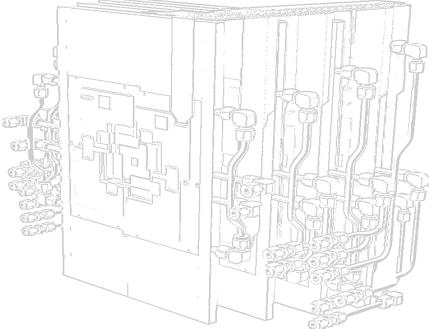
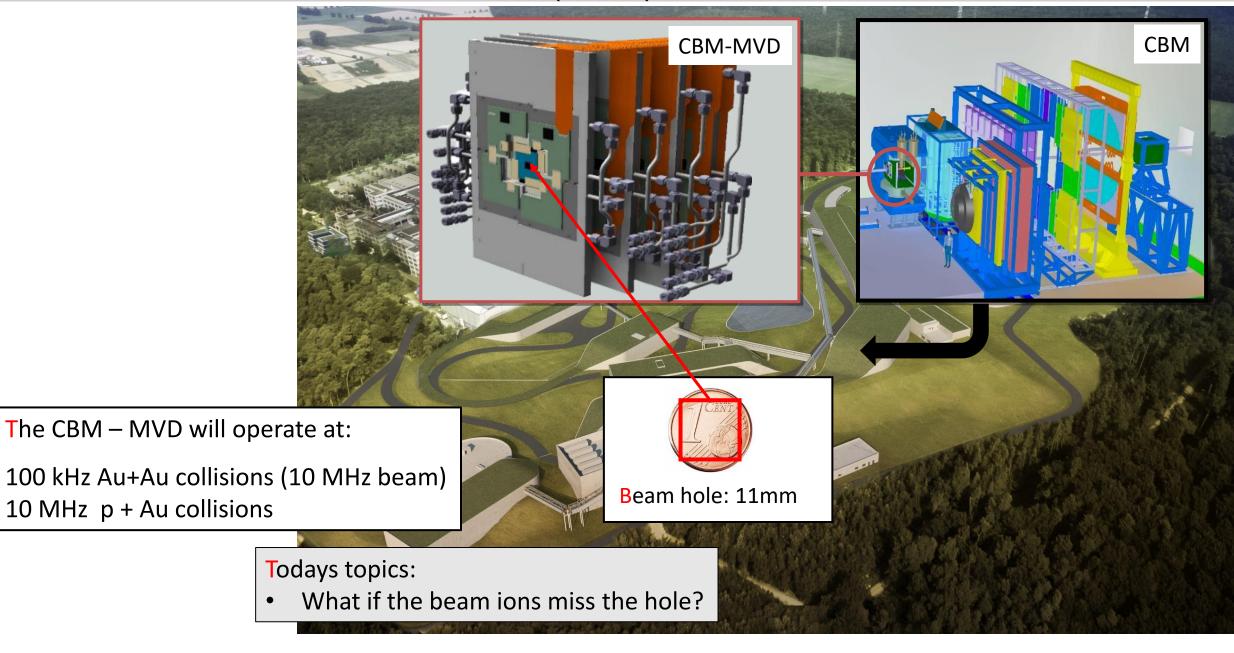


(05P19RFFC1)




Results from Single Event Effect Tests with MIMOSIS-1

Benedict Arnoldi-Meadows for the CBM-MVD Collaboration

IWORID2022, June 28th, 2022.

The CBM Micro Vertex Detector (MVD)

Requirements on the MIMOSIS sensors

	Requirement
Spatial / time resolution	~5 μm / 5 μs
Sensor thickness	~50 μm
Radiation doses (non-ionizing)	~ 7 x 10 ¹³ n _{eq} /cm²
Radiation doses (ionizing)	~ 5 MRad
Rate capability (mean/peak)	(20/80) MHz/cm ²
Readout mode	Continuous

Established by ALPIDE (Sensor of ALICE ITS2 upgrade)

~10 x ALPIDE

Incompatible with ALPIDE > 20x internal bandwidth needed

ldea:

Get inspiration from ALPIDE:

- Re-use pixel analog front-end.
- Re-use priority encoder.

Complement design with:

- High bandwidth internal DAQ.
- Fully depleted pixels (> 20 V top bias).

...

MIMOSIS-0 (2018)

Confirm (depleted) pixels and priority encoder

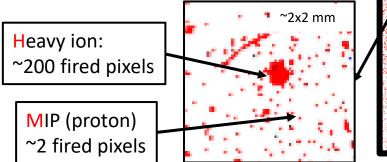
MIMOSIS-1 (2020)

Full size prototype, this work ٠

MIMOSIS-2 (2022)

Advanced rad. hardening, data compression... •

MIMOSIS-3 (2023/24)

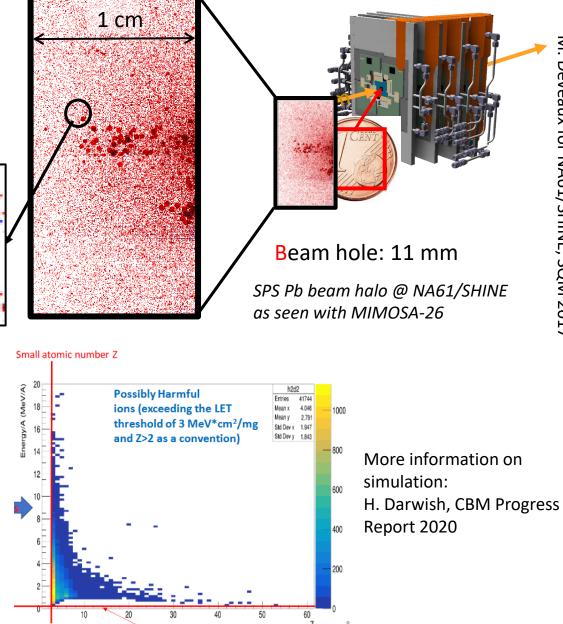

Final sensor

Origin of heavy ion impacts

Beam halo

Origin: Limited focus - few ions miss hole all the time. Our assumptions:

- Geometry still (measured at SPS NA61/SHINE)
- Assume 1 kHz/cm^2 thanks to collimators.



Beam loss

- Direct beam impact to MVD due to steering fail.
- Highest rate: ~300 MHz/cm² Au ions in MVD

Target fragments

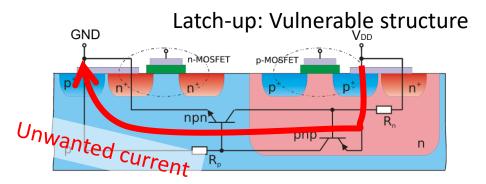
- Nuclear fragments kicked out of target by beam.
- Very slow: Absorbed by first station.
- Highest energy transfer: 35 MeV cm²/mg

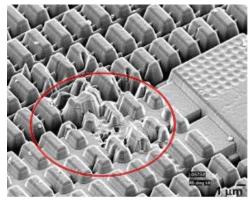
Absorbed in the entrance window

Effect of heavy ion hits on electronics

Heavy ions show high d*E*/dx or LET:

- Scales with z^2 of the projectile => Au = 6200 M.I.P
- Bethe Bloch: "Slow" ions create higher LET than relativistic ions.

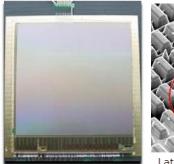

Minority charge carriers excited by ions may:

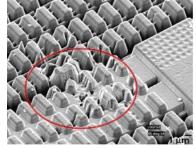

- Break transistor gates => Gate rupture
- Switch digital electronics => Bit flip
- Open unwanted conduction paths => Latch-up (like short cut, extinguish by power cycle)

Macroscopic damage by individual ion: Single Event Effect.

SEE cross section:
$$\sigma = \frac{N_{events}}{N_{ions}} \cdot A_{device}$$
 (JESD57A standard)SEE probability: $p = \frac{N_{events}}{N_{ions}} = \frac{\sigma}{A_{device}}$ size independent.

B. Arnoldi-Meadows, Results from SEE Tests with MIMOSIS-1, IWORID2022, June 28th, 2022.

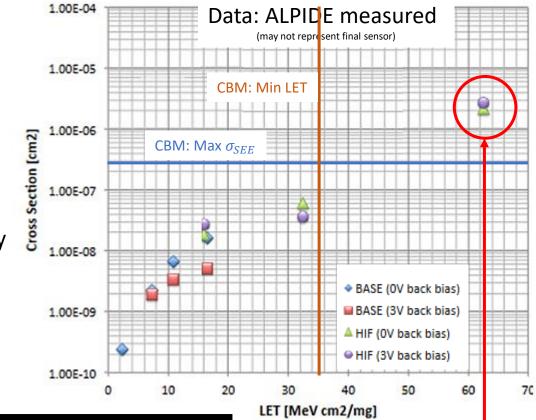



Latch-up in ULTIMATE sensor G. Contin, JINST 11 C12068 (2016)

Irreversible destruction Malfunction if ignored atch-up Thermal destruction if ignored

What do we know?

ULTIMATE for STAR PXL detector


Latch-up in ULTIMATE sensor G. Contin, JINST 11 C12068 (2016)

- Latch-ups for particles with LET > 3 MeV cm²/mg.
- Sensor destruction during experiment observed.
- Old AMS 0.35 µm process

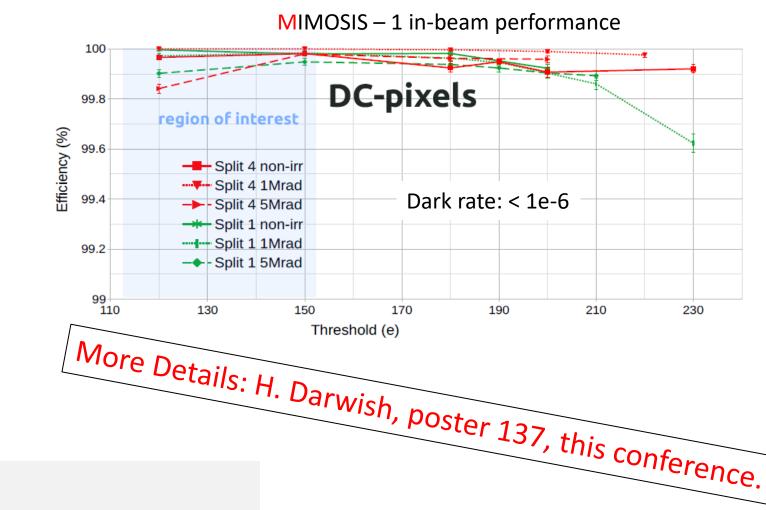
ALPIDE for ALICE-ITS2

- Latch-ups in digital part only
- $\sigma_{BitFlip} \ll \sigma_{LatchUp}$
- Tower Jazz 180 nm

			_ LE
CBM - MVD	Requirement	Remark	
LET tolerance (gate rupture)	> 35 MeV cm²/mg	Fulfilled by ALPIDE (same process)	-
Flux tolerance @ 12 MeV cm ² /mg	~ 300 MHz/cm ²	no damage for > 150 μ s (until beam stop)	
$\sigma_{ m SEE}$ per sensor $@$ 12 MeV cm²/mg	< 3 x 10 ⁻⁷ cm ²	< 1 SEE/h (in 1 kHz Au beam halo)	

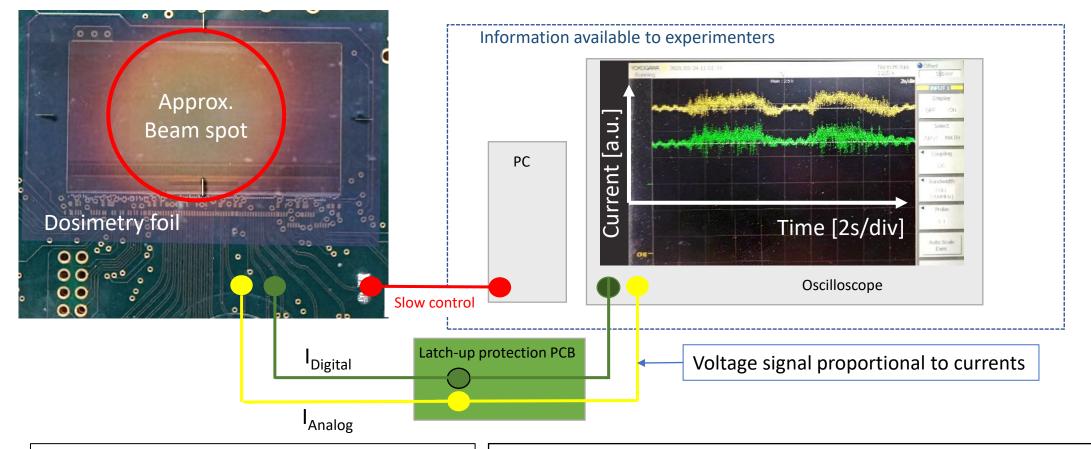
ALPIDE: Valuable guideline (same Tower Jazz 180 nm process as MIMOSIS). But: MIMOSIS has different digital electronics => Must remeasure.

B. Arnoldi-Meadows, Results from SEE Tests with MIMOS/S-1, IWORID2022, June 28th, 2022.


•

The sensor under test: MIMOSIS-1

produced in TowerJazz CIS 180nm process


	MIMOSIS - 1
Spatial/time resolution	~5 μm/5 μs
Thickness	60 µm
Rate (average/peak)	20 / 80 MHz/cm ²
Pixel	> 20V top bias fully depleted

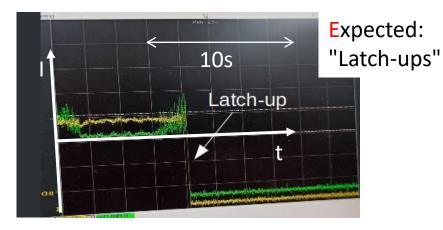
Hardening strategy for MIMOSIS:

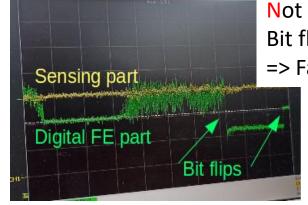
- "Latch up" protective design rules.
- Bit error correction for important status registers (Hamming encoding).
- Triple retundancy of important state machines (future MIMOSIS-2).
- Data registers remain unprotected.

Initial experimental strategy

Latch-up detection/protection:

- Over-current detection.
- Automatic shut down, manual counting.

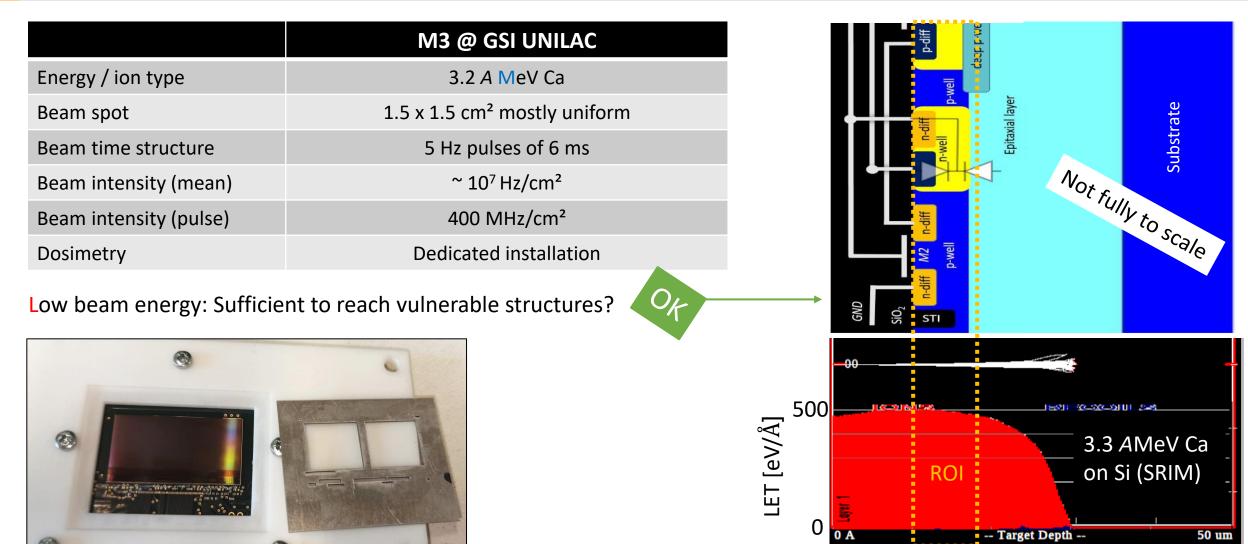

Bit flip detection:


- No/few bit flips expected.
- Manual read-back of slow control data.

Beam line	Beam	LET
GSI (mCBM)	Pb, 1.05 A GeV	12 MeV cm ² / mg
GSI (mCBM)	Xe, 1.3 <i>A</i> GeV	5 MeV cm ² / mg
Beam inten	sity up to 20 MHz	z/cm²

- Beam intensity up to 20 MHz/cm²
- Dosimetry: Beam instrumentation, foil (both not really accurate)

Observations (~ 1 A GeV ions)



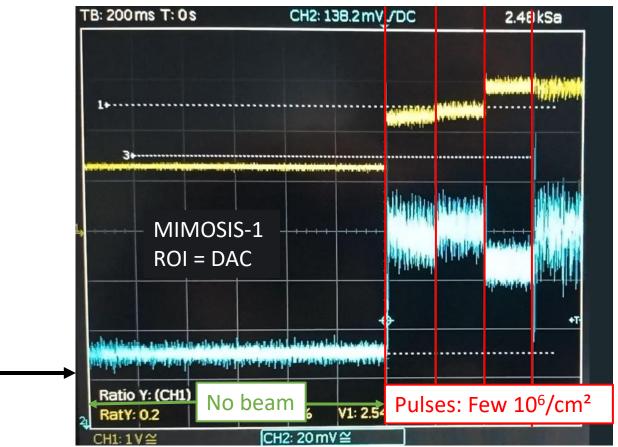
Not expected: Bit flips exist and modify currents. => False LU – signatures?

	Pb, 12 MeV cm ² / mg	Xe, 5 MeV cm ² / mg	
LU	} 71	17 —	→ LU if not recoverable with soft reset.
Bit flip		149 _	→ BF if recoverable with soft reset.
lons on sensor	~ 3 x 10 ⁹	~ 10 ¹¹	
σ per 5.3cm² sensor	1.2 x 10 ⁻⁷ cm ²	LU: 9 x 10 ⁻¹⁰ cm ² BF: 8 x 10 ^{- 9} cm ²	Uncertainty rough factor 3 (dosimetry)
 LU cross section s High bit flip cross 	seems in acceptable ra	preliminary ange.	Bug in Hamming Code implementation. Fixed in MIMOSIS-2. Recovery may require hard reset

- 1. Results match requirements. Sensor bug spotted and fixed.
- 2. Hard to distinguish BF and LU, major bias possible.

Test at GSI - M3 beam line

New strategy:

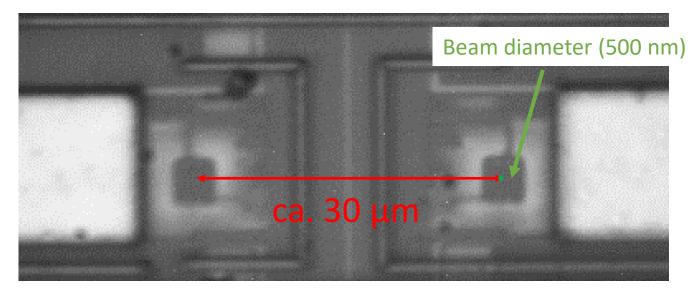

• Use masks to isolate building blocks (most sensitive and representative as chosen by the designers)

Results

Latch-up:

	3.2 A MeV Ca 20 MeV cm² / mg
Latch - ups	0
ROI (all except DAC)	3.2 cm ²
lons on ROI [1/cm ²]	> 3 x 10 ¹⁰ / cm ²
σ per 5.3cm ² sensor	1.5 x 10 ⁻¹⁰ cm ²
No latch-ups observed (=> Why discrepancy wit	but sensor senses ions). h previous results?
 ⇒ will shrink after Cross-section not ac 	rate current fluctuation. ^r Hamming code bug fix. ceptable ^r Hamming code bug fix.

• System instable, no detailed study possible.


Previous observed latch-ups likely falsely interpreted bit flips in DAC.

 \Rightarrow Latch-up cross-section orders of magnitude better than required (all structurs except DAC).

Outlook: Bit flip cross-sections

Beamline: GSI UNILAC X0 Beam: 4.8 A MeV Ca Beam intensity: ~120 Hz Beam diameter: 500 nm, raster scan possible.

Mode: Write and read back RAM.

Micro-Beam: Microscope view of the pixel area

Block	Window size	lons	Bit flips to (1/0)	p [1]	
DAC digital part	320 x 40 μm²	148/µm²	1140/902	1 x 10 ⁻⁴	Reminder:
RAM	50 x 80 μm²	528/µm²	3030/4278	6 x 10 ⁻³	Should be 5x10 ⁻⁸ over full sensor.
			Work in progress		

Result depends on good choice of window. => Numbers subject to update.

Further data analysis needed (e.g. consider surface of RAM cells, beam to device alignment etc.) Preliminary conclusion:

- Protection of status registers indeed required.
- Expect <200 data errors /s and sensor in the MVD.

Summary

MIMOSIS will be the sensor of the CBM-MVD.

- $5 \mu s$, $5 \mu m$ resolution, 80 MHz/cm^2 peak rate, continuous readout.
- 1024 x 504 pixels of $27x30 \mu m^2$ pixels (fully depleted).

MIMOSIS-1 was tested for its tolerance to heavy ion impacts at GSI.

- Latch-up cross section <1.5 x 10⁻¹⁰ cm² at LET 20 MeV cm²/mg
- Beam intensity similar to beam loss scenario => successfully tested
- Unexpectedly many bit flips:
 - Bug in the Hamming code protection of status registers found and fixed.
 - Expect problem solved for MIMOSIS-2

Data for measuring bit flip cross-sections was taken, analysis under progress.

So far: MIMOSIS-1 matches the requirements of the CBM-MVD.

Julio Andary¹, Benedict Arnoldi-Meadows¹, Ole Artz¹, Jérôme Baudot², Grégory Bertolone², Auguste Besson², Norbert Bialas¹, Roma Bugiel², Gilles Claus², Claude Colledani², Hasan Darwish^{1,2,3}, Michael Deveaux³, Andrei Dorokhov², Guy Dozière², Ziad El Bitar², Ingo Fröhlich^{1,3}, Mathieu Goffe², Fabian Hebermehl¹, Abdelkader Himmi², Christine Hu-Guo², Kimmo Jaaskelainen², Oliver Michael Keller⁶, Michal Koziel¹, Franz Matejcek¹, Jan Michel¹, Frédéric Morel², Christian Müntz¹, Hung Pham², Christian Joachim Schmidt³, Stefan Schreiber¹, Matthieu Specht², Dennis Spicker¹, Joachim Stroth^{1,3,4}, Isabelle Valin², Yue Zhao², Roland Weirich¹ and Marc Winter^{2,5} ¹Goethe-Universität Frankfurt, Germany ²Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France ³GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany ⁴Helmholtz Forschungsakademie Hessen für FAIR, Germany ⁵IJCLab, UMR9012 – CNRS / Université Paris-Saclay / Université de Paris, France ⁶Facility for Antiproton and Ion Research in Europe GmbH, Germany

Supported by:

