

A Silicon Vertex Detector with Timing for the Upgrade II of LHCb

23rd International Workshop on Radiation Imaging Detectors

Jakob Haimberger on behalf of the LHCb VELO group

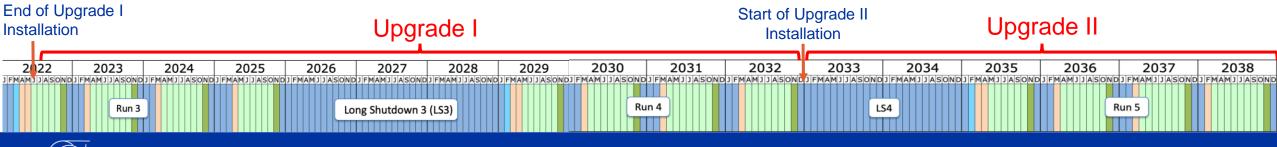
Motivation

LHCb detector is fully equipped in the forward region, precision measurements of decays of b and c hadrons

Future Goals:

- Bigger data samples to study rare decays and improve uncertainty for existing ones
- Extended physics case in flavor physics and beyond

29 June 2022

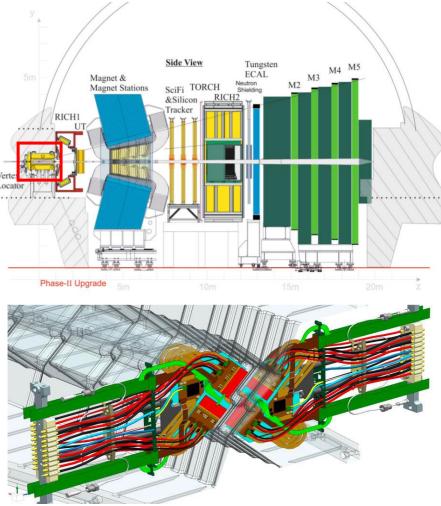

TECHNISCHE UNIVERSITÄT

WIEN

Upgrade II physics case

Jakob Haimberger | A Silicon Vertex Detector with Timing for the Upgrade II of LHCb

Upgrade II TDR



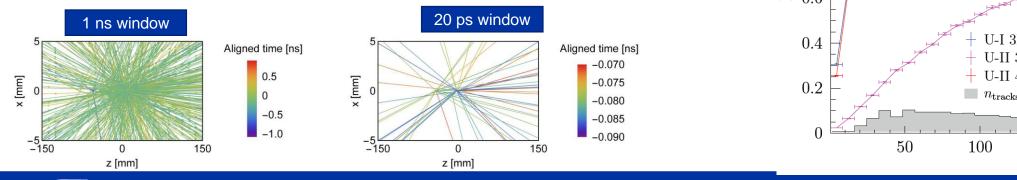
VErtex LOcator (VELO) Upgrade I

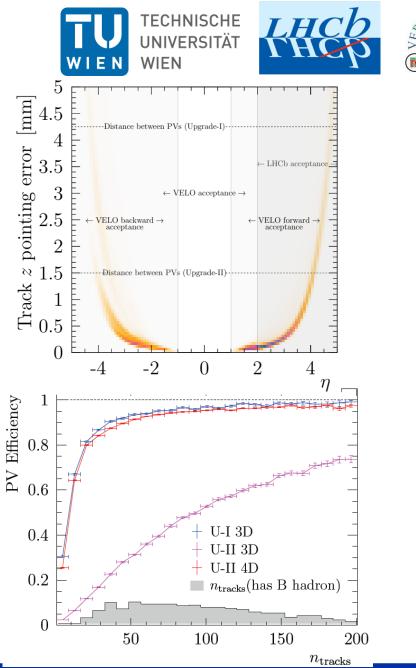
- VELO: silicon tracker close to the collision point
- Need to distinguish between primary and secondary vertices → as close as possible to beam line (5.1 mm)
- Previous detector readout limited to 1MHz
 → limitation for hadronic modes when increasing luminosity
- Upgrade I readout: 40MHz to fully exploit the factor 5 increase in instantaneous luminosity

- Make use of HL-LHC Upgrade:
 - **7.5** x Upgrade I instantaneous luminosity
 - 6 x Upgrade I integrated luminosity
- Similar precision compared to Upgrade I to achieve excellent physic performance

29 June 2022

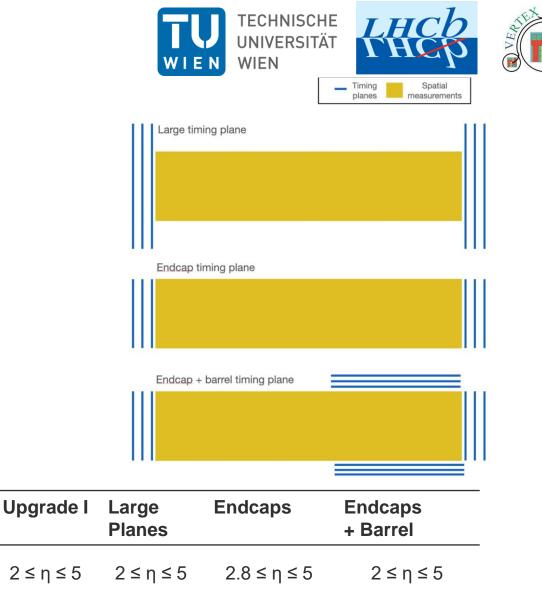
- Main challenges:
 - Increased non uniform radiation damage
 - Higher data rates
- Open R&D paths:
 - Introduction of Timing
 - Different layout scenarios
 - New Sensor and ASIC technologies
 - Material budget reduction


CERN	
N N	


	Run1 & 2	Upgrade I	Upgrade II
Inst. Luminosity [cm ⁻² s ⁻¹]	~4 x 10 ³²	~2 x 10 ³³	~1.5 x 10 ³⁴
Luminosity / year [fb ⁻¹]	2	7	50
Collisions per bunch crossing	1.8	5.5	42
Max Integ. Fluence [MeV _{neq} /cm²]	4.3x10 ¹⁴	8x10 ¹⁵	6x10 ¹⁶
Readout rate /ASIC [10 ⁶ hits/s]		600	4500

The importance of timing

- **Higher pileup** leads to distance between primary vertices close to detector resolution
- Substantial decrease in primary vertex (PV) reconstruction efficiency
- Spread of PVs (RMS) in time ~180 ps
- If tracks can be separated in time, we can recover the lost reconstruction efficiency
- Around 20 ps per track need to ensure same reconstruction efficiency as Upgrade I



Timing Options 1

Timing Planes:

- At least three layers need for outlier rejection
- Far away from interaction point \rightarrow less radiation
- Single measurement needs at least **25 ps resolution**
- **Dispersion** due to different particle momenta
- Three options considered:
 - Large timing planes
 - Endcap planes
 - Endcap + barrel in forward direction

0.05

0.4

0.25

0.1

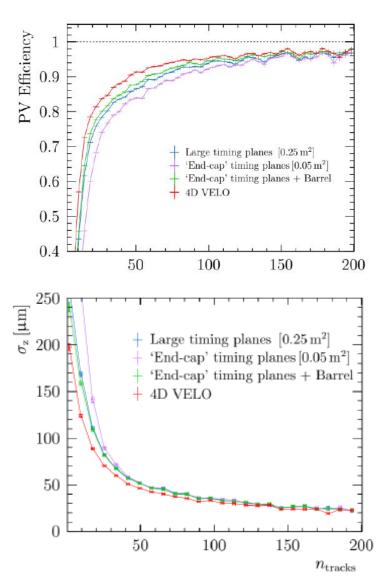
Covered

Additional

area [m²]

range

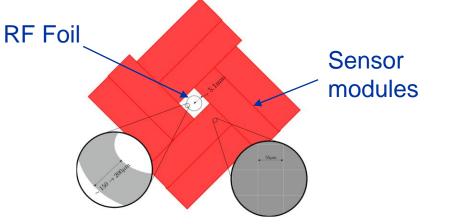
Timing Options 2


4D Tracking

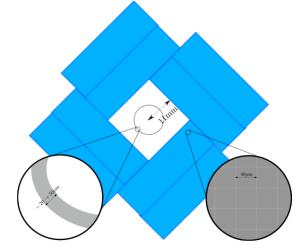
- Single measurement needs at least **50 ps resolution**
- Better efficiency in vertex reconstruction and pattern recognition
- Timing needed even in high irradiated region

4D Tracking preferable over dedicated timing planes:

- **Lower cost** due to:
 - o No additional sensor area
 - No different ASIC & sensors needed
- **o** Better reconstruction performance
 - Better PV efficiency
 - o Better PV resolution


Detector layout scenarios for Upgrade II

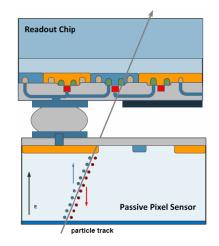
Scenario A (S_A)

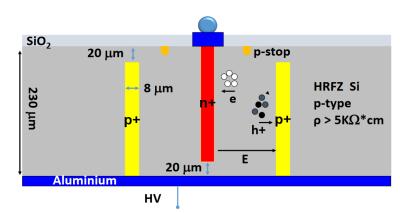

- Distance closest pixel to beamline: 5.1 mm
- ~9 times higher hit rate (350kHz) than the VELO Upgrade I
- Either highly radiation hard sensors /ASIC or frequent replacement
- o 6 x radiation damage as Upgrade I

Scenario B (S_B)

- Distance closest pixel to beamline: **12.5 mm**
- Same hit rate as Upgrade I (40kHz)
- Better hit resolution needed \rightarrow pixel size < 42 µm
- Material budget needs to be reduced before the second measured point
- o Same radiation damage as Upgrade I

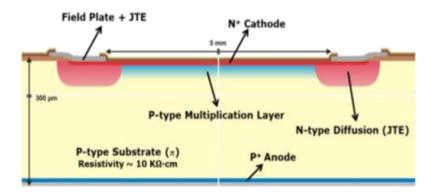
Sketch of a Scenario A using the current sensor modules




Sensor technology

Planar Sensors:

Performance depends on thickness. Thin sensors preferable in high irradiation environments.


- Short collection time
- Uniform weighting field
- Low signal to noise ratio

3D Sensors:

Decoupling of charge generation distance and drift distance

- Timing depended on pixel size
- Signal proportional to thickness
- Good radiation hardness
- Field non-uniformities increase with decreasing pixel size

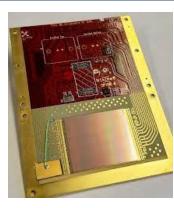
LGADs:

- Internal Gain→ high signal to noise ratio
- Good timing performance due to short high field region
- After 2x10¹⁵ MeV_{neq} /cm² loss of gain due to acceptor removal
- non-uniform irradiation → different gain
- Segmentation problems at small sizes

ASIC requirements

- In both scenarios the ASIC size is independent from the pixel size:
 - **S**_A: Pixel matrix of 256x256
 - **S**_B: Pixel matrix of 335x335
- Listed hit rate assumes a cluster size of 2 and peak rate of 1.5 times the listed value
- Hit pile up should be kept below 1%:
 - S_A: mean time between hits 2.9 µs→29ns discharge time
 - S_B: mean time between hits 25µs→250ns discharge time
- o Data rate calculations assume a 44 bit per hit

Requirement	scenario S_A	scenario S_B
Pixel pitch [µm]	≤ 55	≤ 42
Lifetime fluence $[1 \times 10^{16} 1 \text{ MeV } n_{eq}/\text{cm}^2]$	> 6	> 1
TID lifetime [MGy]	> 28	> 5
Sensor Timestamp per hit [ps]	≤ 35	≤ 35
ASIC Timestamp per hit [ps]	≤ 35	≤ 35
Hit Efficiency [%]	≥ 99	≥ 99
Power per pixel [µW]	≤ 23	≤ 14
Pixel rate hottest pixel [kHz]	> 350	> 40
Max discharge time [ns]	< 29	< 250
Bandwidth per ASIC of $2 \text{ cm}^2 \text{ [Gb/s]}$	> 250	> 94

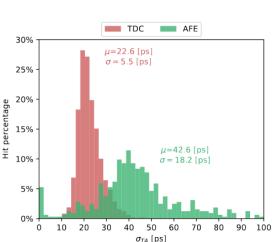


ASIC technology

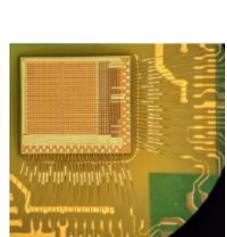
Current: VeloPix developed in collaboration with the Medipix group (130 nm) for Upgrade I

Velopix1:

- o 130nm technology
- o **10.44** Gbps/cm²
- Total time resolution 25 ns
- Power: <1.5 W/cm²


Timepix4 chip

Timespot:


- o 28nm technology
- Minimum pixel size < 40 μm
- TDC: ~23 ps resolution
- AFE: ~43 ps resolution
- Power: ~1.2 W/cm²

Timepix4:

- 65nm technology
- o 23 Gbps/cm²
- Minimum pixel size **55 µm**
- TDC: ~62 ps resolution
- AFE: ~ **70 ps** resolution
- Power: **<0.5** W/cm²

Timespot1 time resolution

LHCb

Timespot1 ASIC

PicoPix:

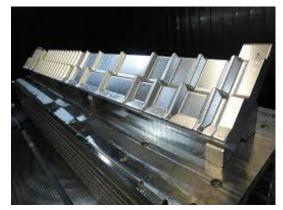
• In development

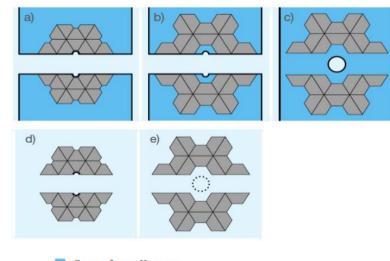
TECHNISCHE UNIVERSITÄT

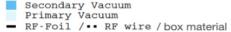
WIEN

- Goals:
 - **28nm** technology
 - >125 Gbps/cm²
 - ο Minimum pixel size 42-55 μm
 - Total time resolution < **30 ps**
 - Power: **<1.5** W/cm²

VeloPix II Precursors




RF-Shield


- o Conducts beam mirror current to avoid wake field excitation
- Shield the detector electronics from RF pickup
- Separation between primary LHC vacuum and the secondary detector vacuum (10 mbar pressure difference)
- $\circ~$ Current corrugated foil only viable for ${\bf S}_{\rm A},$ as a reduction from 180 to 20 μm thickness needed for ${\bf S}_{\rm B}$ not possible
- New cylindrical shield options considered:
 - $_{\odot}$ $\,$ 2-piece movable $\,$ foil with secondary vacuum for S_{A} (a) and S_{B} (b) $\,$
 - $_{\odot}$ Single piece fixed foil secondary detector vacuum for S_B (c)
 - $\circ~$ 2-piece movable foil without secondary vacuum for $\rm S_{B}$ (d)
 - $\circ~$ Wire frame to conduct beam current and without secondary vacuum for $S_{B}\left(e\right)$

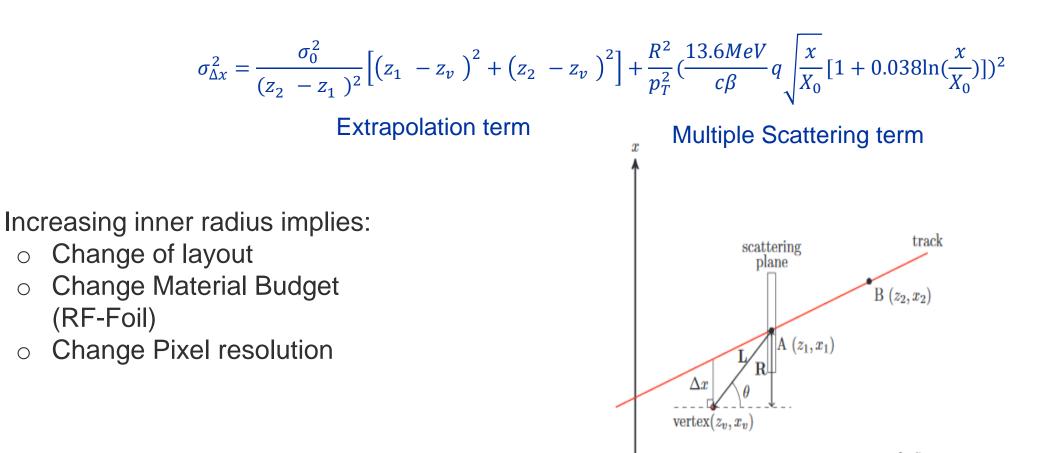
Upgrade I RF-foil

Possible Upgrade II foil solutions

Next 2 years of R&D for LHCb Upgrade II :

• 2 layout scenarios:

- **S**_A : extreme high radiation tolerance and high data rate
- **S**_B: higher precision hit resolution and a reduction of material budget
- Precise timing: needed **resolution** of **20 ps**
 - **4D tracking** preferable over separate timing planes due to better performance and lower overall cost
- Fast timing sensors needed to achieve necessary spatial and temporal resolution
- Material budget must be adjusted depending on the scenario
- New vacuum tank and cooling system must be adjusted to keep accommodate Upgrade II changes



Backup

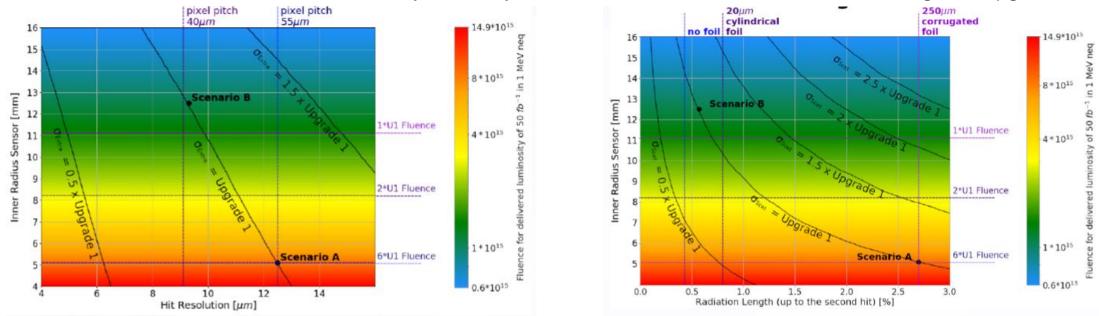
IP-resolution

Ο

Ο

Ο

Ο

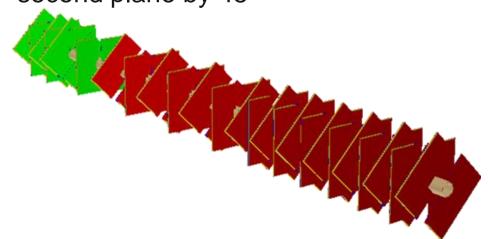


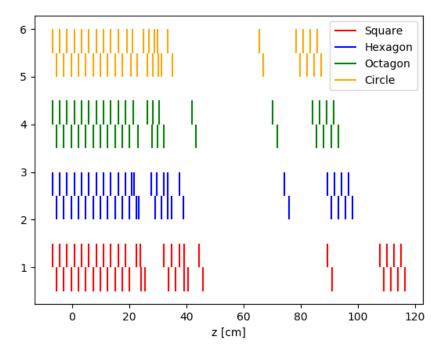
2 Layout Scenarios

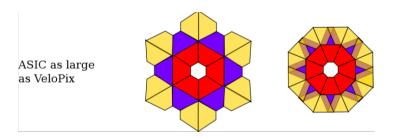
Radiation damage and hit rate can be reduced if sensors are **moved away from the beam** (increased inner radius), **at cost of Impact Parameter (IP) resolution** (closest distance between reconstructed track and PV)

IP resolution can be recovered if **hit resolution** is improved **and material budget** is reduced Two scenarios which would lead to the same IP resolution:

- **Scenario A**: the sensors stay in their Upgrade I position
- o Scenario B: the sensors are moved away until they receive the same hit rate & radiation damage as Upgrade I

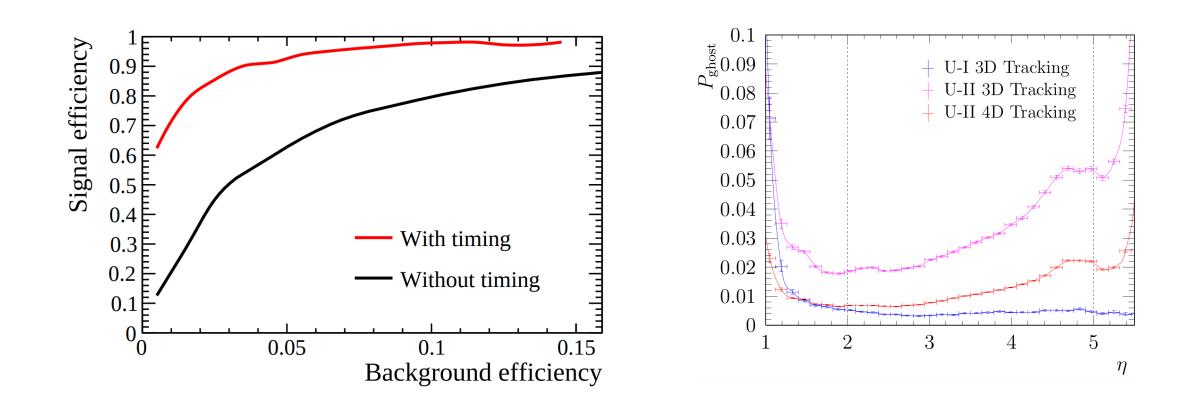

Parametric estimate of IP resolution changes for different inner radii, hit resolutions and material



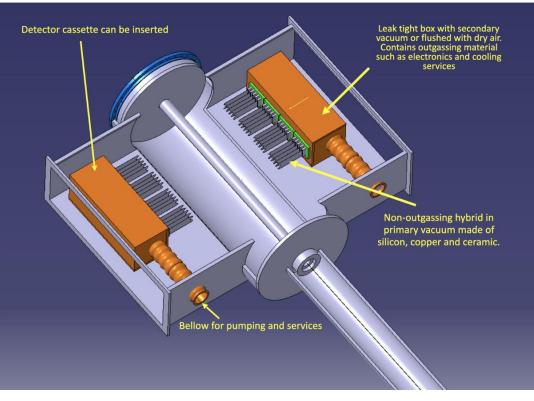

Detector Length

- $\circ\,$ Detector size depending on value of maximal radial distance of the first hit to the beam(r_{max})
- $\circ r_{\max}$ depending on shape of inner hole
- The Octagon can also be approximated by using square tiling and rotate every second plane by 45°

Calculated Layouts for different inner hole shapes



Reconstruction with timing



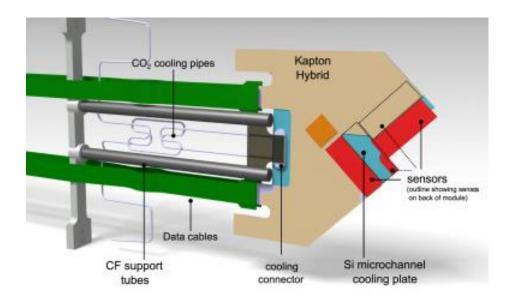
Vacuum tank

- Needs to be redesigned depending on the scenario
- Needed changes:
 - \circ Scenario S_A:
 - Possibility to change the Modules after a certain amount of time

\circ Scenario $\mathbf{S}_{\mathbf{B}}$:

- Better vacuum and bakeout resistance if no RF-foil is used
- $\circ~$ Inclusion of a static cylindrical RF-foil

Possible no foil vacuum tank



Cooling

- Cooling is necessary to prevent thermal runaway caused by leakage current and to avoid annealing of the irradiated sensors.
- Power budget expected to be a least 1.5 W/cm² (same as Upgrade I)
- Upgrade I:

CO₂ cooling via silicon micro channel plates

- Upgrade II:
 - New coolants such as Krypton are needed to allow cooling below -40°C
 - Two phase cooling
 - Alternative substrate solutions involving 3D printing silicon carbide or titanium reduce costs

Upgrade I cooling

