
Quality Control (QC) of FBK 3D Si Sensors from the ATLAS ITk Preproduction TIFPA Trento Institute for **Fundamental Physics**

<u>D M S Sultan^{1*}, Md Arif Abdulla Samy^{1,2}, J.X. Ye^{1,2}, M. Boscardin^{3,2}, F. Ficorella^{3,2}, S. Ronchin^{3,2}, and G.-F. Dalla Betta^{1,2}</u>

^{1.} TIFPA-INFN, Trento, Italy, ^{2.} University of Trento, Italy, and ^{3.} FBK, Trento, Italy,

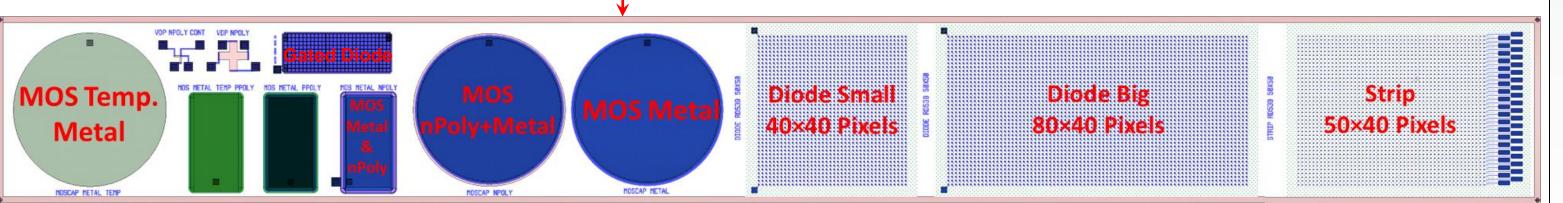
Prefac		Bulk Capacitance								
ΙΙσιασ		Buik Capacitance		Depleti	on Details			Depletion D	Jetails	
	metal bump passivation	1.8 ×10 ⁻⁸ C-V at Bulk	Dev ID	Lateral Depletion [V]	Depl. Underneath n- tip [V]	GOOD?	Dev ID	Lateral Depletion [V]	Depl. Underneath n-tip [V]	h GOOD?
Fabricated on Si-Si wafer, having high resistive		RD53B-W09D-After-Dicing	A_3,6	2.00	59.0	Y	A_3,6			N
active thickness ~150 µm.	oxide	RD53B-W13G-After-Dicing	B_4,6	2.00	 61.0	N	B_4,6			N
active thickness ~150 µm.			C_2,5 D_3,5	2.00	58.0	Y Y	C_2,5 D 3,5			N N
Both N ⁺ and P ⁺ columns filled with Poly-Si	p ⁺ Ohmic column		E_4,5			N	E_4,5		· ·	N
	p ⁺ Onmic column / p-spray		F_5,5	3.00	58.0	N	F_5,5 G 1,4	3.00	57.0	N
N ⁺ column kept ~25 µm away from the low	p⁻ HR sensor wafer		G_1,4 H_2,4			N	H_2,4			N
resistive substrate. (higher breakdown)			I_3,4	3.00	57.0	Y	I_3,4			N
resistive substrate. (myner breakdown)	n ⁺ Junction column		J_4,4	3.00		Y	J_4,4			N
Finally, the sensor will have to be thinned and	p ⁺⁺ LR handle wafer		K_5,4 L_6,4			N	K_5,4 L_6,4	2.00 3.00	59.00 58.00	Y Y
			M_1,3	3.00	58.0	Y	M_1,3		-	N
back metalized (note: probing candidates have	Metal to be deposited after thinning		N_2,3			N	N_2,3			N
not been thinned and metalized)	(a) Handle wafer to be thinned down		O_3,3 P_4,3	5.00 3.00	50.0 55.0	Y Y	O_3,3 P_4,3			N
not been thinned and metalized			Q_5,3			N	Q_5,3	3.00	59.00	Y
A few QC requirements for qualifying sensors:	Figure 1: (a) A cross		R_6,3			N	R_6,3	3.00	57.00	Y
	Metal schematic (not to scale),	0.8	S_2,2	3.00	58.0	Y	S_2,2	3.00	57.00	Y
Leakage current below 2.5 µA/cm ²	and (b) a micrograph of		T_3,2 U_4,2	3.00	58.0	N	T_3,2 U_4,2	3.00 3.00	57.00	Y V
Depletion Voltage (V _{depl}) is less than 10 V	50×50 um^2 layout	0.4 <u>0.4 0.00000000000000000000000000000</u>	V_5,2	3.00	58.0	Y	V_5,2			N
• Depiction voltage (v_{depl}) is less than to v			<u> </u>			N	<u> </u>	2.00	57.00	V

(a)

and Applications

•

*


•

•

geometry. 'L' denotes the *interelectrode distance* between the n and p column, ~35 µm.

✤ A wafer holds the following reticles:

- ✤ 24 RD53B compliant big sensors Several PCM blocks
- ✤ 384×400 pixels shorted with temporary metal for QA stage electrical characterization
- ✤ Wafer 09 and 13 diced at IZM, keeping the temporary metal layer.
- PCM block holds 8 stitched test blocks.
- Each test block holds mainly:
- Diodes of different dimensions
- **Strips** *
- MOS & Gated diode

Figure 2: A wafer layout details.

Trento Probing Setup

(b) <u>X_4,1</u> Figure 6: (a) Bulk C-V plot of RD53B sensors after dicing, and C-V summary: (b) W09 after dicing and (c) W19 after dicing

- \checkmark C-V curves of RD53B of the same sensors (as figure 4(a)) reports lateral depletion ~3V.
- ✤ A second stage depletion was noticed for all good sensors around ~60V, a complete depletion underneath the n⁺-column.

3.00

3.00

Reverse Forward Current

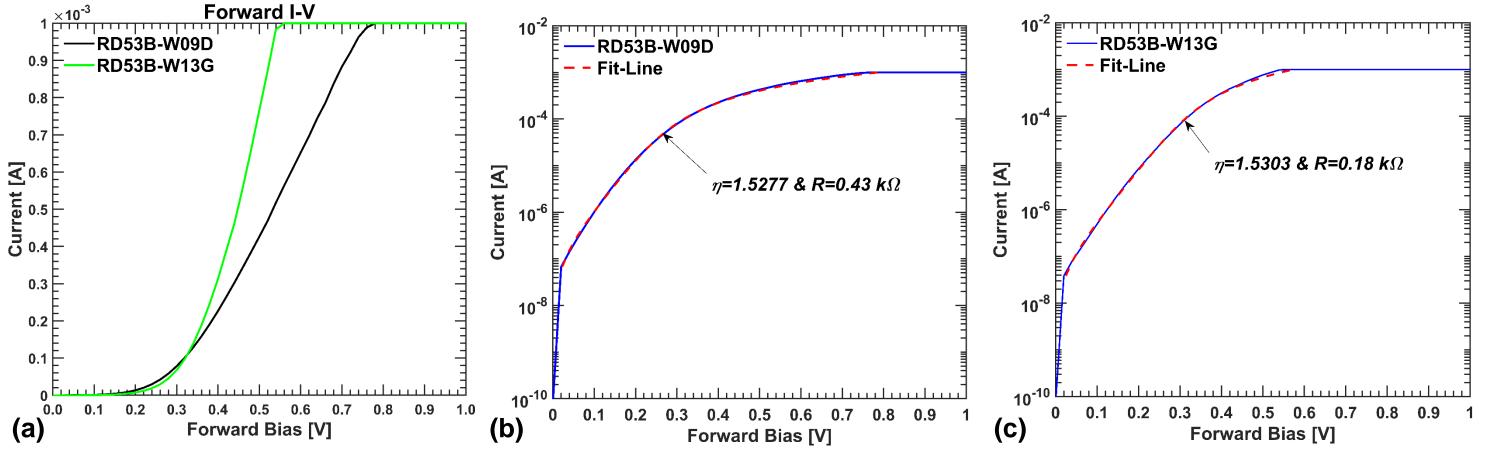


Figure 7: (a) Forward I-V plot of RD53B sensors from both wafers and the numerical model of the parasitic resistance applied on: (b) RD53B-W09D & (c) RD53B-W13G.

- Parasitic resistance 'R' contribution numerically modeled as $f(I_D)$ using MATLAB.
- Starting fit values: Is=1e-14 A, R=100 Ω and η =0.5.
- The model completely fits with the diode measured data for the ideality factor ~1.5.
- The parasitic series resistance presents in the order of several 100 Ω (negligible).

Interpixel Capacitance

 $I_D = I_S \left[\exp\left(\frac{V_D - (R * I_D)}{\eta V_T}\right) - 1 \right]$

Rearranging,

 N
 W_3,1

 Y
 X_4,1

$V_D = \eta V_T ln \left| \left(\frac{I_D}{I_S} \right) + 1 \right| + RI_D$

Where, $I_S = Saturation Current (typ. 10^{-15}A)$ V_T = Thermal voltage (0.0254V) at 21 °C $\eta = Ideality Factor$ V_D is the applied voltage I_D is the diode current *R* is the parasitic series resistance at bulk

Interpixel Capacitance

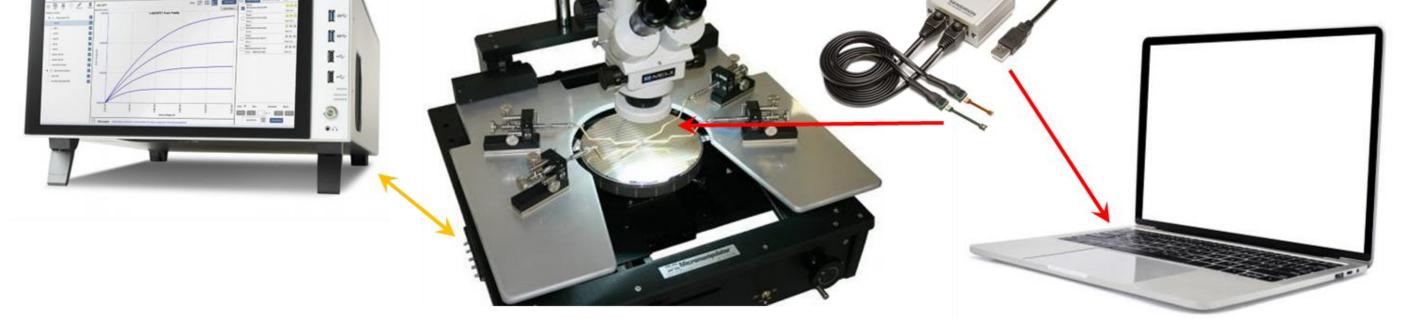


Figure 3: Experimental setup.

- ✤ A manual probing station and Keithley 4200 SCS analyzer were used to acquire probing data.
- Sensirion SHT4x sensor and SEK bridge were used for logging temperature and humidity.

Dev ID

A_3,6 B_4,6 C_2,5 D_3,5 E_4,5 F_5,5 G_1,4 H_2,4 I_3,4 J_4,4 K_5,4 L_6,4 M_1,3 N_2,3 O_3,3 P_4,3 O_3,3 P_4,3 Q_5,3 R_6,3 S_2,2 T_3,2 U_4,2

- ✤ No dry-air supplied.
- No temperature-dependent measurements were performed.

QC Results

& Leakage Current

> = 10 0 C

I-V Normalized to 20°C		
10 ¹		
The formula $k(I, V) = \frac{\Delta I}{\Delta V} \cdot \frac{V}{I}$.		
$\sum_{i=1}^{10^{0}} k(I, V) = \frac{\Delta I}{\Delta V} \cdot \frac{V}{I}.$		
^{10⁻²} - RD53B-W09D-Before-Dicing 		
RD53B-W13G-Before-Dicing 		
10 ° 10 20 30 40 50 60 70 80 90 100 110 120 130 140	ці - 150 -	
(a) Reverse Bias [V]	(b)	

				1	DEVICE LEA	KAGE CURRENT	[A] @ Vrev =
	AGE CURRENT			-	Dev ID	Leakage [A]	VBD [V]
Dev ID	Leakage [A]	VBD [V]	GOOD?	-	A_3,6	1.00E-04	12.0
A_3,6	1.26E-07	96.0	Y	-	_	1.00E-04	4.0
B_4,6	1.00E-04	4.0	N	-	B_4,6		1.5
C_2,5	1.52E-07	62.0	У	-	C_2,5	1.00E-04	
D_3,5	1.49E-07	72.0	Y	-	D_3,5	1.00E-04	3.0
E_4,5	1.00E-04	4.0	N	-	E_4,5	1.00E-04	4.5
F_5,5	1.00E-04	2.0	N	-	F_5,5	1.00E-04	0.5
G_1,4	1.27E-07	67.0	Y	· .	G_1,4	6.09E-08	66.0
H_2,4	1.00E-04	3.0	N	-	H_2,4	1.00E-04	5.0
1_3,4	2.81E-08	52.0	Y	· .	I_3,4	1.00E-04	3.0
	4.43E-08	31.0	Y	- -	J_4,4	1.00E-04	3.0
K_5,4	1.00E-04	2.0	N	-	K_5,4	1.33E-07	79.0
L_6,4	1.00E-04	6.0	N	-	L_6,4	1.18E-07	64.0
M_1,3	4.09E-08	67.0	Y		M_1,3	1.00E-04	0.5
N_2,3	1.00E-04	1.5	N	-	N_2,3	1.00E-04	17.0
O_3,3	2.62E-08	54.0	Y	-	O_3,3	1.00E-04	3.0
P_4,3	2.57E-08	51.0	Y		P_4,3	1.00E-04	2.0
Q_5,3	1.00E-04	4.0	N		Q_5,3	9.23E-08	67.0
R_6,3	1.00E-04	4.0	N		R_6,3	1.82E-07	75.0
s_2,2	3.01E-08	61.0	Y		S_2,2	3.67E-08	58.0
<u>,-</u> Т_3,2	3.09E-08	56.0	Y	-	T_3,2	1.15E-07	75.0
U_4,2	1.00E-04	4.0	N		U_4,2	2.98E-08	57.0
V_5,2	5.18E-08	63.0	Y		V_5,2	1.00E-04	3.0
W 31	1.00E-04	4.0	N		W_3,1	6.29E-08	65.0

- ✤ A strip test structure was used to estimate Interpixel capacitance.
- ✤ Applied AC signal : 10 kHz, 100 mV.
- Additional floating neighboring strips can add a 10% contribution more to measured data.
- ✤ Interpixel capacitance is ~4 fF.

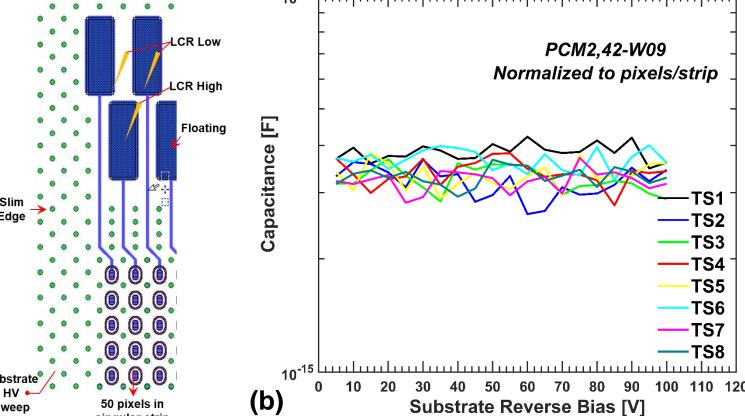


Figure 8: (a) Experimental setup, and (b) Interpixel capacitance of PCM2,42-W09 strip normalized to pixels/strip.

@ Interpixel Resistance

- A strip test-structure was used to ** estimate Interpixel resistance. Strip resistance (R_{int}) was normalized to pixels/strip.
- Substrate sweep has been made from -5 V to -60 V.
- Interpixel resistance is several $G\Omega$. *
- ✤ As expected, no substrate bias dependence was noticed for nonirradiated candidates.

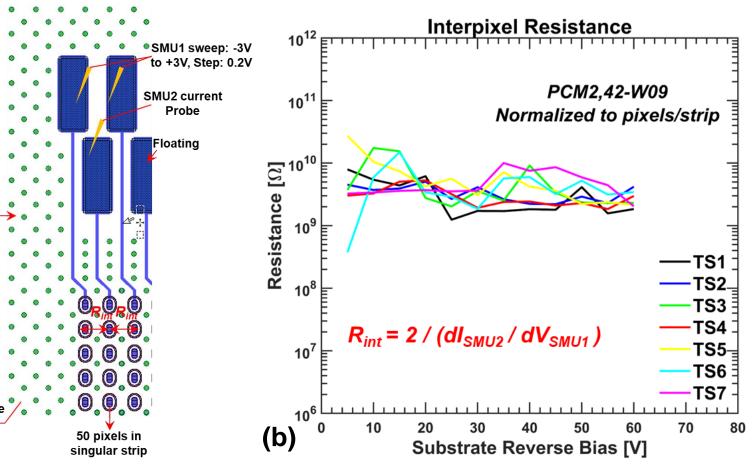


Figure 9: (a) Experimental setup, and (b) Interpixel resistance of PCM2,42-W09 strip normalized to pixels/strip.

& Surface Parameters

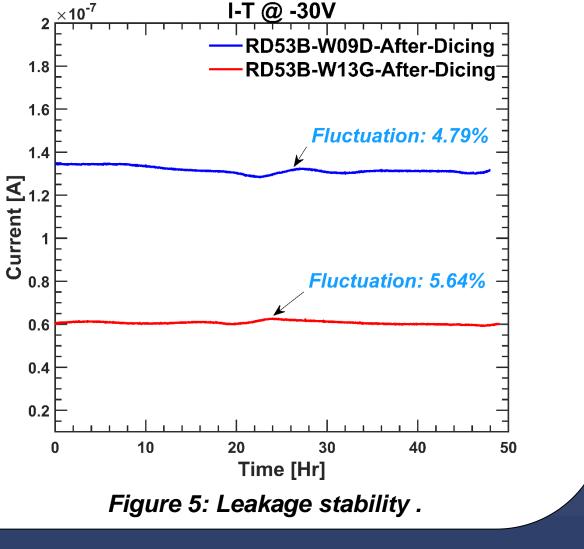
5	×10 ⁻¹⁰ MOS Capacitance	OxideThickness [nm]			OxideCharge [cm ⁻²]				
4		MetalOnly	nPoly+Metal	TempMetalOnly	ID	MetalOnly	nPoly+Metal	TempMetalOnly	
	MOS-PCM2,42-W09-TS4	1066.91	974.60	1664.45	TS1	1.34E+11	5.79E+10	1.58E+11	

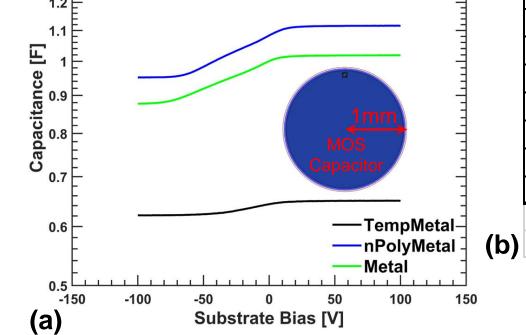
(a) Sweep

X_4,1 3.39E-08 62.0 Y (C) X_4,1

V_5,2 W_3,1

Figure 4: (a) I-V plot of RD53B sensors before and after dicing, and I-V summary: (b) W09 after dicing and (c) W13 after dicing


- RD53B sensors report similar leakage before and after dicing.
- Good sensors (green) show breakdown voltage around 60V, where k(I,V) = 4.
- ✤ W13 yield drops to 38% (it was 50% at wafer level) due to dicing-stage driven edge-microcracks and surface damages.


Leakage Stability

Leakage was observed for 48 hours for the same RD53B reticles for an applied reverse bias of 30V. Leakage fluctuation remains below 10%.

```
max(I) - min(I)
  average(I)
```

✤ The logged temperature was ~20.5 ± 1 °C, and the relative humidity was 19.6 ± 3.1 %.

4.39	6.47	2.39	Spread	4.04E+10	1.51E+10	5.87E+10
1063.33	969.85	1668.02	Median	6.39E+10	4.78E+10	1.01E+11
1058.48	963.43	1665.00	TS8	1.15E+11	2.44E+10	4.67E+10
1059.67	965.44	1669.13	TS7	7.54E+10	3.47E+10	6.45E+10
1060.80	966.51	1670.43	TS6	7.06E+10	4.75E+10	7.54E+10
1062.68	968.68	1669.34	TS5	5.71E+10	5.91E+10	9.22E+10
1063.98	971.03	1667.54	TS4	4.95E+10	5.90E+10	1.10E+11
1064.78	972.49	1668.50	TS3	3.16E+10	4.80E+10	1.23E+11
1065.30	973.38	1667.39	TS2	9.77E+09	4.58E+10	1.69E+11

Figure 10: (a) TS4-MOS capacitance of different types at different bulk bias, and (b) summary of estimated oxide thickness and oxide charge of PCM2,42-W09.

- Investigation of non-irradiated diced sensors' electrical parameters seems to agree with the FBK 3D sensor production line.
- ✤ Yield uncertainty from the dicing stage is known. However, diced good sensors leakage and depletion properties are similar to the wafer level QA data.

**Reference:

1. *G.-F.* Dalla Betta et al., Development of a new generation of 3D pixel sensors for HL-LHC, DOI: 10.1016/j.nima.2015.08.032

(a)

GOOD?

Ν

Ν

Ν Ν

Ν

Y

Ν N

Ν Y

γ

Ν

Ν Ν N

Y

1.00E-04 4.0 N

D M S sultan, Ph.D. d.m.s.sultan@cern.ch