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v' Developing radiation-resistant silicon detectors for particle tracking in the next generation of high-energy physics
experiments (e.g. HL-LHC or FCC) able to efficiently operate in extreme radiation environments, ® ~ 1x10!/ n,/cm?.

v The Low-Gain Avalanche Diode (LGAD) technology helps to mitigate the radiation damage effects by exploiting the
controlled charge multiplication mechanism [1].

v" To maintain the desired gain (~ 10 - 20) and to prevent premature breakdown and large leakage currents at very high
fluences, a careful implementation of the “"multiplication” region and a proper design of the peripheral region are needed.

o ad-hoc advanced Technology CAD (TCAD) modeling of LGAD electrical behavior and its charge collection properties,
before and after irradiation [2];

o massive test campaign on specifically devised LGAD structures both non-irradiated and irradiated ones.

=> Validation of the development framework and evaluation of the impact of several design strategies.
=> Sensor design and optimization before the large volume production.
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=> “quasi-1D approach”.
Gaussian analytical

p-type gain layer.
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following analytical law:
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parameterization” [3].

Press (2021).

where the c¢ removal factor is
“Torino

[3] M. Ferrero et al, An Introduction to
Ultra-Fast Silicon Detectors, 1st ed. CRC

v' Focus on avalanche effect due to
the multiplication layer (i.e. high
electric field region, or gain layer)
=> stringent mesh requirements
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Analysis of the gain layer sensitivity for different combinations of
doping profile and active substrate thickness => impact on the
device electrical behavior, in terms of breakdown voltage (V) and
response after the passage of a charged particle, e.g. a minimum
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