

Experimental Particle Physics

50 µm Thick LGAD: Electrical Characterisation & Gain Measurement

CSIC

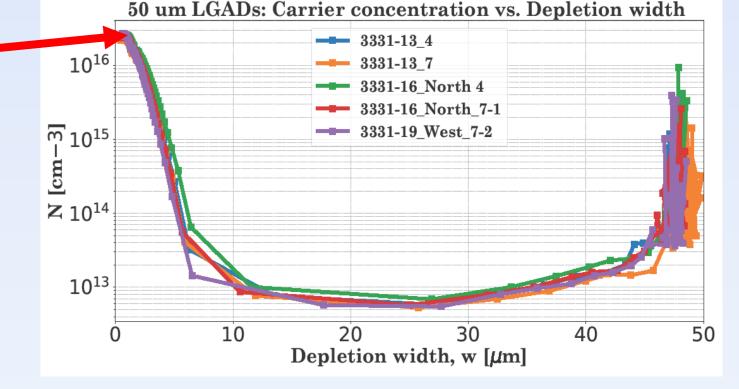
L. Lombigit¹, R. Bates¹, N. Moffat², M. Bullough³, D. Maneuski¹

1. SUPA School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, United Kingdom

2. Centro Nacional de Microelectronica, IBM-CNM(CSIC), Barcelona, 08193, Spain

3. Micron Semiconductor Ltd, 1 Royal Buildings, Lancing, BN15 8UW, United Kingdom

Introduction


- *****The Low-Gain Avalanche Detectors (LGADs) operate with an internal charge multiplication [1].
- ✤ Higher signal output compared to standard diode for MIP excellent timing resolution.
- *****Identified as one of the candidates for the High-Granularity **Timing Detector for ATLAS Phase-II upgrade [2].**
- Typical structure: n+/p/p-/p+ on p-type high resistivity substrate [3].
- * Reports the electrical characteristics & gain of 50 µm thick LGADs with various gain implant doses.

Matariala and Mathada

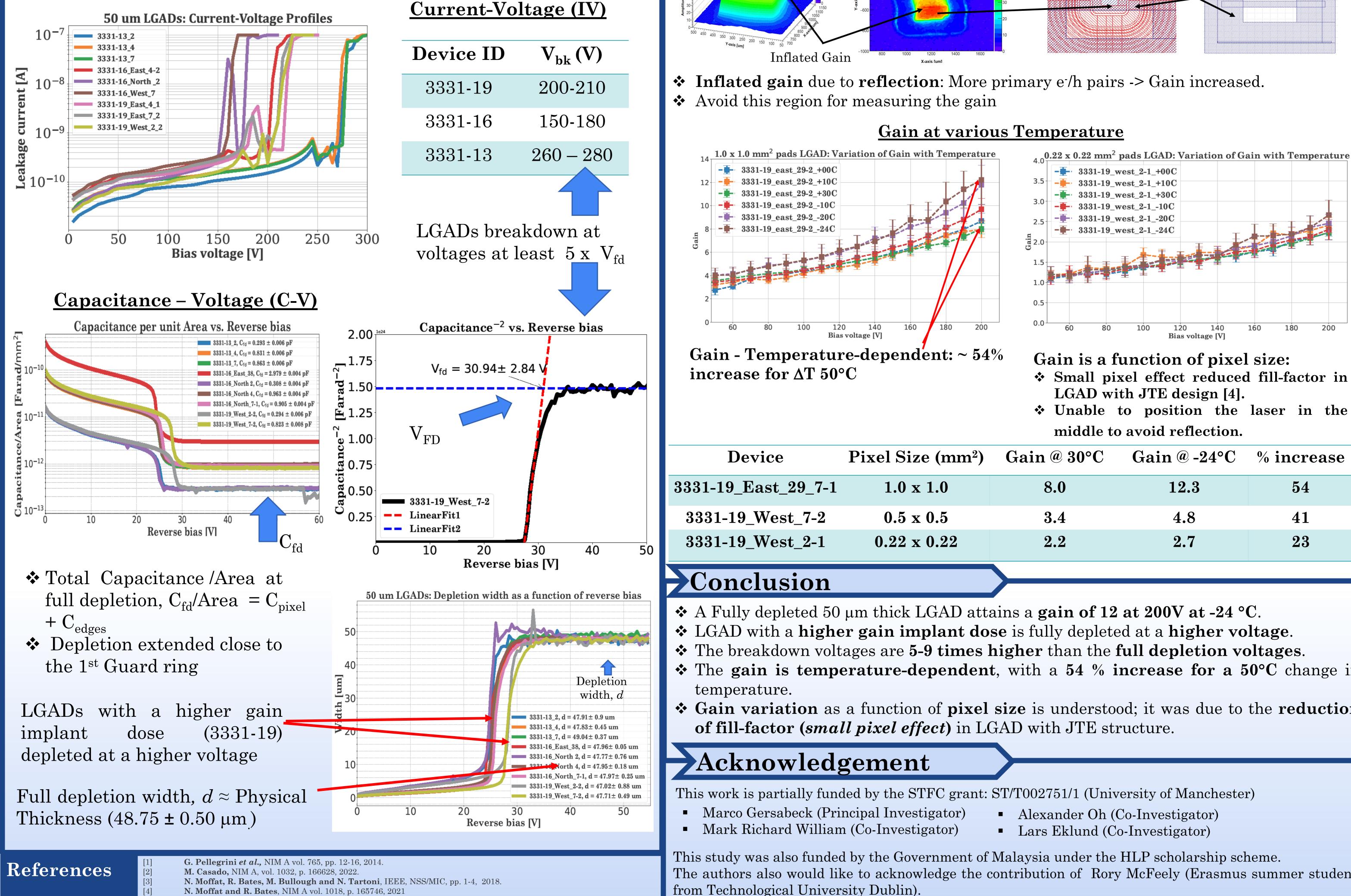
Gain Doping cond		50 um LGADs: Carrier conc			
Device	Peak (10 ¹⁶ cm ⁻³)	:	10 ¹⁶		3 331- 3 331-
3331-19_West_7-2	2.72	-	- 15		
3331-16_North_7-1	2.61	[cm-3	1015		
3331-16_North-4	2.46	Z	1014		
3331-13_7	2.37		10 ¹³		
3331-13-4	2.44			10	20
			0	10	20 Depletion w

C-V Measurement Summary

		V				
	LGADs	LGADs Pixel Size (mm ²) + JTE(µm)		C _{fd} (pF/mm ²)	Depletion Width, d (µm)	
	3331-19_West_2-2	(0.22 x 0.22) + 10	30.31	0.29	47.02 ± 0.88	
	3331-19_West_7-2	$(0.5 \ge 0.5) + 10$	30.95	0.82	47.71 ± 0.49	
	3331-16_North_2	(0.22 x 0.22) + 10	26.24	0.31	47.77 ± 0.76	
	3331-16_North_4	$(0.5 \ge 0.5) + 20$	27.62	0.96	$\textbf{47.95} \pm \textbf{0.18}$	
	3331-16_North_7-1	$(0.5 \ge 0.5) + 10$	28.68	0.91	47.97 ± 0.25	
	3331-16_East_38	$(1.0 \ge 1.0) + 10$	28.35	2.98	47.96 ± 0.37	
	3331-13_2	$(0.22 \ge 0.22) + 10$	26.64	0.29	47.91 ± 0.90	
	3331-13_4	$(0.5 \ge 0.5) + 20$	28.36	0.83	47.83 ± 0.37	
	3331-13-7	$(0.5 \ge 0.5) + 10$	28.30	0.86	49.04 ± 0.37	
F	Gain Measurement			TCT MIP Calibration Setup		
	Vbias: Keithley 2410 90% Beam Expander DUT (90:10 Vbias: Keithley Vbias: Keithley	Motion troller: llab ntrol ment of DUT	Sr-90 MIP? LGAD Scintillation Detection Laser Power a	Osc. Trigger: Scintillator + 'AND' qualifer LGAD MIP events: Record signal on LGAD tor adjusted @ 55.8% ≈ 1 MIP		
	10% Beam Monitor (PIN diode from wafer 3331-19) Softwares IR or Red Laser Laser Trigger Softwares Laser Laser Trigger Surce Normalised QDut = QDut/QbeamMonitor Gain : Normalised QLGAD Normalised QRef. At Full depletion		140	Fit Output Entries Mean 126.9 ± 5 26.9 ± 5 27.01 352.5 352.5 3	3.58 / 132 0.26 0.40	
	Laser Source Normalised Q _{Dut} =	Trigger controller Mormalised QLGAD Gain :	60 40 20	$MPV_{MIP} \approx 91 \text{m}$	5 0 0 0 0 0 0 0 0 0 0 0 0 0	

Al layer

180


54

200

Materials and Methods					
The LGADs		n+ Cathode JTE P-type (π) substrate (10kohm cm)			
Wafer ID	Device ID	Pixel Size (mm²) + JTE (μm)	Electrical Characterisation	Gain Measurement	
3331-19	West_2-2	(0.22 x 0.22) + 10	Current-Voltage	Single Photon Absorption (SPA) TCT	
	West_7-2	$(0.50 \ge 0.50) + 10$	Capacitance-Voltage	Source: IR Laser	
	$North_2$	$(0.22 \ge 0.22) + 10$	Temp (°C). = 24 ± 2	Source. In Laser	
	North_4	$(0.50 \ge 0.50) + 20$	Temp (0). -24 ± 2	Beam size: FWHM 10µm	
3331-16	North_7-1	$(0.50 \ge 0.50) + 10$			
	East_38	$(1.0 \ge 1.0) + 20$		Temp.(°C): 30, 10, 0, -10, -	
	2	$(0.22 \ge 0.22) + 10$	RH (%) = 44 ± 3	20, -24	
3331-13	4	$0.50 \ge 0.50 + 20$			
	7	$(0.50 \ge 0.50) + 10$			
3331-19	East_29	$(1.0 \ge 1.0) + 10$	LGADs used for the gain measurement		
3331-19	$West_7-2$	$(0.50 \ge 0.50) + 10$			
3331-19	West_2-1	$(0.22 \ge 0.22) + 10$			

Gain Implant Dose: Wafer 3331-19 > Wafer 3331-16 > Wafer 3331-13

Electrical Characteristics

M. Casado, NIM A, vol. 1032, p. 166628, 2022.
N. Moffat, R. Bates, M. Bullough and N. Tartoni, IEEE, NSS/
N. Moffat and R. Bates , NIM A vol. 1018, p. 165746, 2021

331-19_West_2-1	0.22 x 0.22	2.2	2.7	23
331-19_West_7-2	$0.5 \ge 0.5$	3.4	4.8	41

front illumination

- * LGAD with a **higher gain implant dose** is fully depleted at a **higher voltage**.
- * The breakdown voltages are **5-9 times higher** than the **full depletion voltages**.
- * The gain is temperature-dependent, with a 54 % increase for a 50°C change in
- * Gain variation as a function of pixel size is understood; it was due to the reduction

The authors also would like to acknowledge the contribution of Rory McFeely (Erasmus summer student from Technological University Dublin).