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Perturbative expansion:

gap:

 2Eout < Q0

unrestricted Ein ~ Q

state-of-the-art: 2-loop order

L = ln(Q/Q0) � 1
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Non-global logarithms at lepton colliders 

▸ high-energetic radiation restricted to certain regions (inside jets) 

▸ soft radiation from secondary emissions inside                                          
jets leads to intricate pattern of large logarithms                                       
that do not exponentiate 

▸ “non-global” logarithms not contained in conventional parton showers 

▸ single-logarithmic effects  at lepton colliders 

▸ resummation in large-  limit using BMS integral equation 

At hadron colliders, non-global logarithms take on a more intricate form, 
and no generalization of BMS equation exists!

∼ (αs L)n

Nc
J. Banfi, G. Marchesini, G. Smye: JHEP 08 (2002) 006
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Perturbative expansion includes “super-leading” logarithms:
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formally larger than O(1)
J. R. Forshaw, A. Kyrieleis, M. H. Seymour: JHEP 08 (2006) 031

gap:

 2Eout < Q0

unrestricted Ein ~ Q

L = ln(Q/Q0) � 1
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Really, double logarithmic series starting at 3-loop order:

gap:

 2Eout < Q0

unrestricted Ein ~ Q

L = ln(Q/Q0) � 1
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6

Super-leading logarithms 

▸ breakdown of color coherence due to a                                                 
subtle quantum effect: soft gluon                                                    
exchange between initial-state partons 

▸ soft anomalous dimension: 

where  if particles  and  are both in initial or final state 

▸ imaginary part (only at hadron colliders):

sij > 0 i j

Neubert Part B2 EFT2

candidates for dark matter. Because of its feeble interactions with SM particles, finding an ALP is
very challenging, especially because the expected signals depend very sensitively on how the ALP
decays and how long it travels before it decays. This introduces a strong model dependence in the
analysis, which in practice requires one to make drastic assumptions, such as the existence of a single
non-zero coupling, in order to derive useful bounds. But in this way important e↵ects can be missed.
Wouldn’t it be nice to be able to probe all ALP couplings to the SM simultaneously and in a way that
is insensitive to the ALP lifetime and branching fractions?

In project B, I propose a complementary new search strategy for ALPs, which is based on a
systematic, global analysis of virtual ALP e↵ects on precision measurements. Contrary to the
resonant production of ALPs, indirect searches for their contributions in quantum fluctuations
are insensitive to the lifetime of the ALP and the way in which it decays. They can thus provide
largely model-independent bounds on the ALP couplings and mass.

Achieving the two grand goals of the EFT2 proposal will significantly boost the LHC discovery
potential for new phenomena and thus have a transformative impact on the field. This requires
expertise in both SM physics and physics beyond the SM, which has been a hallmark of my research
since over two decades. In EFT2, I plan to approach both challenges using the powerful tools of modern
e↵ective field theories (EFTs). Doing this in the context of a single proposal has the advantage that
important interconnections can be exploited. For example, the global analysis of ALP couplings in
project B will rely on precision measurements of diboson production, top-quark production, and Higgs
production at the LHC. In order not to fake a signal of NP, it is essential that the SM predictions for
these quantities can be calculated reliably and with the highest possible precision. This is exactly the
main goal of project A.

Project A – Theory of non-global observables at hadron colliders

While fixed-order perturbative calculations still define an important frontier in collider physics, in
many cases they do not provide su�ciently accurate predictions. If the radiation in a high-energy
scattering process is restricted by experimental cuts, higher-order terms in the perturbative series can
be enhanced by large logarithms associated with the emission of soft and collinear particles. The
simple structure of these emissions sometimes makes it possible to resum the logarithmic terms to all
orders. An important example are event shapes in e

+
e
� collisions near the two-jet limit [18–22], for

which the cross section can be factorized into a product (in the convolution sense) of a soft function S

accounting for soft gluon emissions, two jet functions J and J̄ describing the collinear radiation inside
the jets, and a hard function H encoding the virtual corrections to the underlying hard-scattering
process e

+
e
�
! q q̄:

� = H J ⇥ J̄ ⇥ S . (1)

Soft-Collinear E↵ective Theory (SCET) o↵ers a convenient framework for performing such resumma-
tions [23–26]. In general, the hard function for a process involving n colored particles with momenta
{p} ⌘ {p1, . . . , pn} is related to the square of a hard-scattering partonic amplitude |Mn({p}, µ)i,
which can be represented as a vector in color space [27]. This object obeys a renormalization-group
(RG) evolution equation with the anomalous dimension [28–32]

�({p}, µ) =
X

(ij)

Ti · Tj

2
�cusp(↵s) ln

µ
2

�sij
+
X

i

�
i(↵s) + O(↵3

s) , (2)

where sij ⌘ 2�ij pi ·pj +i0, and the sign factor �ij = +1 if the momenta pi and pj are both incoming or
outgoing, and �ij = �1 otherwise. The notation (i1 . . . ik) refers to unordered tuples of distinct parton
indices. The cusp anomalous dimension �cusp and the collinear anomalous dimensions �

i are functions
of the QCD coupling. Up to two-loop order the result features only pairwise correlations among the
color charges and momenta of the di↵erent partons. Along with RG evolution equations for the jet
and soft functions, this provides the basis for the systematic resummation of all large logarithmic
corrections to the cross section.

2
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In more complicated cases, a standard phenomenological approach is to combine fixed-order per-
turbative calculations with parton showers, which simulate the cascades of soft and collinear QCD
radiation produced in high-energy particle collisions. The accuracy of these showers is limited since
they reply on the large-Nc approximation, in which one includes only the leading terms in an expansion
in powers of 1/Nc, where Nc = 3 is the number of colors in QCD. While there is currently a strong
e↵ort under way to extend parton showers beyond the strict Nc ! 1 limit and match them consis-
tently with fixed-order calculations [33–37], obtaining a complete understanding of even the leading
logarithmic e↵ects is a di�cult problem. Dasgupta and Salam showed that observables insensitive to
radiation in certain regions of phase space contain single-logarithmic terms not captured by resumma-
tion techniques based on (1) [38]. These so-called non-global logarithms (NGLs) have a complicated
structure, because they are generated by secondary emissions o↵ the original hard partons. Banfi,
Marchesini and Smye (BMS) derived a non-linear integral equation, which can be used to perform
the resummation of the leading NGLs in the large-Nc limit [39]. Since “strong energy ordering” is
a crucial ingredient for the BMS equation, its logarithmic accuracy cannot easily be improved, even
though important progress in this direction has recently been made in [40]. Since the vast majority
of collider observables include regions of phase space in which radiation is not restricted, the presence
of NGLs severely limits the applicability of higher-order resummation techniques. In [41, 42], we
have generalized the SCET approach to derive a novel factorization theorem for dijet cross sections
in e

+
e
� collisions, based on which all logarithmically enhanced corrections, including the NGLs, can

be controlled by an RG evolution equation. These papers mark a milestone, because they o↵er a
radically new perspective to think about NGLs. Our approach is completely general and works for
any number of colors. In the large-Nc limit, the leading logarithms agree with those derived from the
BMS equation. Related proposals for dealing with NGLs have been put forward in [43, 44].

For hadron-collider processes, in which colored particles appear in both the initial and final states,
the resummation of all logarithmically enhanced terms poses an even more formidable conceptual
problem, which so far has been solved only partially and for a very limited class of observables. The
prototypical non-global observable is the inter-jet energy flow, where a veto associated with a low-
energy scale Q0 is imposed on radiation in a region away from the hard jets with energies of the order
of the collision energy, Q =

p
ŝ � Q0. Being sensitive only to large-angle soft radiation, one naively

expects the leading logarithms to this observable to scale as ↵
n
s L

n (with n � 1), where L = ln(Q/Q0).
This is indeed the case for jet production at lepton colliders, but Forshaw, Kyrieleis and Seymour
argued that at hadron colliders double logarithms arise starting at four-loop order [17], so that the
leading logarithms are, in fact, of the form ↵

3+n
s L

3+2n. The SLLs are a subtle e↵ect, whose origin can
be traced back to the first term in (2). For e

+
e
� collisions all colored particles appear in the final state,

and hence �ij = 1 for all pairs (ij). Color-conservation then ensures that the imaginary part of the
anomalous-dimension matrix is proportional to the unit matrix in color space, and its e↵ect cancels
out when one considers the square of the hard-scattering amplitude. At hadron colliders, however,
the initial-state particles carry color and a non-trivial imaginary part remains,

Im�({p}, µ) = �2⇡ T1 · T2 �cusp(↵s) + . . . , (3)

where the dots represent terms proportional to the unit matrix. This e↵ect gives rise to Coulomb
phases with a highly non-trivial color structure. Their presence spoils the real-virtual cancellations for
collinear emissions o↵ the initial states and thus violates the notion of strict (i.e., process-independent)
factorization [45–47]. Even 15 years after this e↵ect was discovered, remarkably little is known about
it. While the first SLL (⇠ ↵

4
sL

5) has been calculated for arbitrary 2 ! 2 hard processes [48], the
second SLL (⇠ ↵

5
sL

7) is known for some selected partonic channels only [49]. The higher-order
structure of SLLs, their contribution to other hard processes, and their large-order behavior are
completely unknown. Moreover, while the SLLs are responsible for the parametrically leading higher-
order contributions to the cross sections, their e↵ects are not captured in any existing parton shower,
because they appear at subleading order in 1/Nc counting.

In July 2021, my collaborators and I took the first steps toward extending our SCET approach
for non-global observables at lepton colliders to the more complicated case of hadron colliders [50].
As a concrete example, we have considered the pp ! 2 jet cross section with a veto on hard radiation
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radiation produced in high-energy particle collisions. The accuracy of these showers is limited since
they reply on the large-Nc approximation, in which one includes only the leading terms in an expansion
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radically new perspective to think about NGLs. Our approach is completely general and works for
any number of colors. In the large-Nc limit, the leading logarithms agree with those derived from the
BMS equation. Related proposals for dealing with NGLs have been put forward in [43, 44].

For hadron-collider processes, in which colored particles appear in both the initial and final states,
the resummation of all logarithmically enhanced terms poses an even more formidable conceptual
problem, which so far has been solved only partially and for a very limited class of observables. The
prototypical non-global observable is the inter-jet energy flow, where a veto associated with a low-
energy scale Q0 is imposed on radiation in a region away from the hard jets with energies of the order
of the collision energy, Q =

p
ŝ � Q0. Being sensitive only to large-angle soft radiation, one naively

expects the leading logarithms to this observable to scale as ↵
n
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n (with n � 1), where L = ln(Q/Q0).
This is indeed the case for jet production at lepton colliders, but Forshaw, Kyrieleis and Seymour
argued that at hadron colliders double logarithms arise starting at four-loop order [17], so that the
leading logarithms are, in fact, of the form ↵
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be traced back to the first term in (2). For e

+
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� collisions all colored particles appear in the final state,

and hence �ij = 1 for all pairs (ij). Color-conservation then ensures that the imaginary part of the
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completely unknown. Moreover, while the SLLs are responsible for the parametrically leading higher-
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because they appear at subleading order in 1/Nc counting.

In July 2021, my collaborators and I took the first steps toward extending our SCET approach
for non-global observables at lepton colliders to the more complicated case of hadron colliders [50].
As a concrete example, we have considered the pp ! 2 jet cross section with a veto on hard radiation

3

Neubert Part B2 EFT2

In more complicated cases, a standard phenomenological approach is to combine fixed-order per-
turbative calculations with parton showers, which simulate the cascades of soft and collinear QCD
radiation produced in high-energy particle collisions. The accuracy of these showers is limited since
they reply on the large-Nc approximation, in which one includes only the leading terms in an expansion
in powers of 1/Nc, where Nc = 3 is the number of colors in QCD. While there is currently a strong
e↵ort under way to extend parton showers beyond the strict Nc ! 1 limit and match them consis-
tently with fixed-order calculations [33–37], obtaining a complete understanding of even the leading
logarithmic e↵ects is a di�cult problem. Dasgupta and Salam showed that observables insensitive to
radiation in certain regions of phase space contain single-logarithmic terms not captured by resumma-
tion techniques based on (1) [38]. These so-called non-global logarithms (NGLs) have a complicated
structure, because they are generated by secondary emissions o↵ the original hard partons. Banfi,
Marchesini and Smye (BMS) derived a non-linear integral equation, which can be used to perform
the resummation of the leading NGLs in the large-Nc limit [39]. Since “strong energy ordering” is
a crucial ingredient for the BMS equation, its logarithmic accuracy cannot easily be improved, even
though important progress in this direction has recently been made in [40]. Since the vast majority
of collider observables include regions of phase space in which radiation is not restricted, the presence
of NGLs severely limits the applicability of higher-order resummation techniques. In [41, 42], we
have generalized the SCET approach to derive a novel factorization theorem for dijet cross sections
in e

+
e
� collisions, based on which all logarithmically enhanced corrections, including the NGLs, can

be controlled by an RG evolution equation. These papers mark a milestone, because they o↵er a
radically new perspective to think about NGLs. Our approach is completely general and works for
any number of colors. In the large-Nc limit, the leading logarithms agree with those derived from the
BMS equation. Related proposals for dealing with NGLs have been put forward in [43, 44].

For hadron-collider processes, in which colored particles appear in both the initial and final states,
the resummation of all logarithmically enhanced terms poses an even more formidable conceptual
problem, which so far has been solved only partially and for a very limited class of observables. The
prototypical non-global observable is the inter-jet energy flow, where a veto associated with a low-
energy scale Q0 is imposed on radiation in a region away from the hard jets with energies of the order
of the collision energy, Q =

p
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Jet cross sections at high-energy colliders exhibit intricate patterns of logarithmically enhanced

higher-order corrections. In particular, so-called non-global logarithms emerge from soft radiation

emitted o↵ energetic partons inside jets. While this is a single-logarithmic e↵ect at lepton colliders,

at hadron colliders phase factors in the amplitudes lead to double-logarithmic corrections starting

at four-loop order. This e↵ect was discovered a long time ago, but not much is known about the

higher-order behavior of these terms and their process dependence. We derive, for the first time,

the all-order structure of these “super-leading logarithms” for generic 2 ! l scattering processes at

hadron colliders and resum them in closed form.

If the radiation in a high-energy scattering process is
restricted by experimental cuts, higher-order terms in the
perturbative series are enhanced by large logarithms as-
sociated with soft and collinear emissions. The simple
structure of these emissions often makes it possible to
resum the logarithmic terms to all orders, either analyt-
ically or using parton-shower methods. For non-global
observables, such as exclusive jet cross sections in which
a veto on radiation is imposed only in certain angular
regions, even the leading logarithms have a complicated
structure due to the fact that they are generated by sec-
ondary emissions o↵ the original hard partons [1].

The prototypical non-global observable is the interjet
energy flow, where a veto associated with a low scale Q0

is imposed on radiation in a region away from the hard
jets with energy of the order of the collision energy Q.
Being sensitive only to large-angle soft radiation, one ex-
pects the leading logarithms to this observable to scale as
↵n
s Ln, where L = ln(Q/Q0). This is indeed the case for

e+e� colliders, but Forshaw, Kyrieleis and Seymour [2]
argued that at hadron colliders double logarithms arise
at four-loop order, so that the leading logarithm at this
order is ↵4

sL
5. These so-called super-leading logarithms

(SLLs) are a subtle e↵ect generated by complex phases in
the amplitudes, which spoil the real-virtual cancellation
for collinear emissions o↵ the initial states [3–5]. The
e↵ect is absent in the large-Nc limit and not captured
by any of the existing parton showers, which therefore
do not account for the leading-logarithmic corrections to
non-global observables at hadron colliders.

Even 15 years after this e↵ect was discovered, remark-
ably little is known about it. While the first SLL is known
for arbitrary 2 ! 2 hard processes [6], the second SLL
(⇠ ↵5

sL7) is known for some selected partonic channels
only [7]. The all-order structure of SLLs, their contribu-
tion to other hard processes and their large-order behav-
ior are completely unknown. One reason for this lack of
understanding lies in the fact that one needs to perform
calculations in the full color space, whose dimension is

rapidly growing with the number of emitted partons.
In [8, 9] we have derived factorization theorems for

non-global observables in Soft-Collinear E↵ective The-
ory (SCET) [10–12] and found that non-global logarithms
are governed by a renormalization-group (RG) equation.
Here we apply this method to non-global logarithms at
hadron colliders and derive the all-order structure of the
SLLs ↵3

sL
3 ⇥ ↵n

sL2n for arbitrary 2 ! l processes. We
further show that the e↵ect already arises for l = 0, rel-
evant e.g. to Higgs production with a central jet veto.

As a concrete example, we consider the pp ! 2 jet
cross section with a veto on hard radiation in a rapidity
region �Y in between the two leading jets. This can be
imposed by requiring that any additional jet in the veto
region has a transverse momentum smaller than Q0. At
leading logarithmic accuracy, there is no sensitivity to
how the radiation is vetoed but only to the scale hier-
archy between Q0 and the transverse momentum of the
hard jets, which is of order the partonic center-of-mass
energy, Q =

p
ŝ =

p
x1x2s. For this “gap between jets”

observable, the following factorization formula holds [13]:

�(Q0) =
X

a1,a2=q,q̄,g

Z
dx1dx2

⇥
1X

m=4

⌦
Hm({n}, Q, µ) ⌦ Wm({n}, Q0, x1, x2, µ)

↵
.

(1)

The hard functions Hm describe all possible m-parton
processes a1 + a2 ! a3 + · · · + am and are obtained after
imposing appropriate kinematic constraints, such as cuts
on the transverse momenta and rapidities of the leading
jets. One then integrates over the phase space but for
fixed directions {n} = {n1, . . . , nm} of the m partons,
i.e.

Hm =
1

2ŝ

mY

i=3

Z
dEi E

d�3
i

(2⇡)d�2
|Mm({p})ihMm({p})|

⇥ (2⇡)d �(
p

ŝ � Etot) �(d�1)(~ptot) ⇥hard

��
p
 �

,
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[see also: T. Becher, M. Neubert, L. Rothen, D. Y. Shao (2015, 2016)]

density matrix involving hard-scattering 
amplitude (and its conjugate) in      

color-space formalism
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from these Wilson lines

Sm({n}, Q0, µ) =

Z

Xs

X
h0|S†

1
(n1) . . . S

†
m(nm) |XsihXs|S1(n1) . . . Sm(nm) |0i ✓(Q0 � E out) ,

(2.3)

where the states Xs contain an arbitrary number of soft partons. The soft functions depend

on the energy Q0 of the radiation and implicitly also on the shape of the region ⌦out in

which the energy is measured. TheWilson-line matrix elements have ultraviolet divergences

which can be renormalized away and this induces a dependence on the renormalization scale

µ.

The hard functions are given by the square of the hard-scattering amplitudes, together

with the phase-space constraints ⇥in

��
p
 �

which restrict the m hard partons to the inside

of the jets,

Hm({n}, Q, µ) =
1

2Q2

X

spins

mY

i=1

Z
dEiE

d�3

i

(2⇡)d�2
|Mm({p})ihMm({p})|

⇥ (2⇡)d �
⇣
Q�

mX

i=1

Ei

⌘
�
(d�1)(~ptot)⇥in

��
p
 �

. (2.4)

For cone jets the phase-space constraint ⇥in

��
p
 �

is defined by cones around the hard

partons. For recombination algorithms, on the other hand, the jet clustering constraints

can be quite complicated in general and can spoil factorization. However, they simplify in

our setup which considers the limit of hard partons together with (infinitely) soft radiation.

This situation was considered in [31] where it was shown that for anti-kT jets, the jet

boundary becomes cone-like so that the theorem (2.1) also applies to this case.

Since the cross section must be independent of the scale µ, the scale dependence among

the hard and soft functions must cancel. The one for the hard function is driven by the

RG equation

d

d lnµ
Hm({n}, Q, µ) = �

mX

l=k

Hl({n}, Q, µ)�H

lm
({n}, Q, µ) . (2.5)

This evolution equation is formally solved by the path ordered exponential

U({n}, µs, µh) = P exp

 Z
µh

µs

dµ

µ
�
H({n}, µ)

�
, (2.6)

and the resummed cross section is then

d�(Q,Q0) =
1X

l=k,m�l

⌦
Hl({n}, Q, µh)⌦Ulm({n}, µs, µh) ⌦̂Sm({n}, Q0, µs)

↵
. (2.7)

The condition m � l arises because the anomalous dimension matrix is zero below the

diagonal, see below. The hat in ⌦̂ indicates that one has to integrate over the angles of

the (m � l) additional unresolved emissions. For the choice µh ⇠ Q and µs ⇠ Q0, the

hard and soft functions are free of large logarithms and can be expanded in the respective

– 4 –
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Jet cross sections at high-energy colliders exhibit intricate patterns of logarithmically enhanced

higher-order corrections. In particular, so-called non-global logarithms emerge from soft radiation

emitted o↵ energetic partons inside jets. While this is a single-logarithmic e↵ect at lepton colliders,

at hadron colliders phase factors in the amplitudes lead to double-logarithmic corrections starting

at four-loop order. This e↵ect was discovered a long time ago, but not much is known about the

higher-order behavior of these terms and their process dependence. We derive, for the first time,

the all-order structure of these “super-leading logarithms” for generic 2 ! l scattering processes at

hadron colliders and resum them in closed form.

If the radiation in a high-energy scattering process is
restricted by experimental cuts, higher-order terms in the
perturbative series are enhanced by large logarithms as-
sociated with soft and collinear emissions. The simple
structure of these emissions often makes it possible to
resum the logarithmic terms to all orders, either analyt-
ically or using parton-shower methods. For non-global
observables, such as exclusive jet cross sections in which
a veto on radiation is imposed only in certain angular
regions, even the leading logarithms have a complicated
structure due to the fact that they are generated by sec-
ondary emissions o↵ the original hard partons [1].

The prototypical non-global observable is the interjet
energy flow, where a veto associated with a low scale Q0

is imposed on radiation in a region away from the hard
jets with energy of the order of the collision energy Q.
Being sensitive only to large-angle soft radiation, one ex-
pects the leading logarithms to this observable to scale as
↵n
s Ln, where L = ln(Q/Q0). This is indeed the case for

e+e� colliders, but Forshaw, Kyrieleis and Seymour [2]
argued that at hadron colliders double logarithms arise
at four-loop order, so that the leading logarithm at this
order is ↵4

sL
5. These so-called super-leading logarithms

(SLLs) are a subtle e↵ect generated by complex phases in
the amplitudes, which spoil the real-virtual cancellation
for collinear emissions o↵ the initial states [3–5]. The
e↵ect is absent in the large-Nc limit and not captured
by any of the existing parton showers, which therefore
do not account for the leading-logarithmic corrections to
non-global observables at hadron colliders.

Even 15 years after this e↵ect was discovered, remark-
ably little is known about it. While the first SLL is known
for arbitrary 2 ! 2 hard processes [6], the second SLL
(⇠ ↵5

sL7) is known for some selected partonic channels
only [7]. The all-order structure of SLLs, their contribu-
tion to other hard processes and their large-order behav-
ior are completely unknown. One reason for this lack of
understanding lies in the fact that one needs to perform
calculations in the full color space, whose dimension is

rapidly growing with the number of emitted partons.
In [8, 9] we have derived factorization theorems for

non-global observables in Soft-Collinear E↵ective The-
ory (SCET) [10–12] and found that non-global logarithms
are governed by a renormalization-group (RG) equation.
Here we apply this method to non-global logarithms at
hadron colliders and derive the all-order structure of the
SLLs ↵3

sL
3 ⇥ ↵n

sL2n for arbitrary 2 ! l processes. We
further show that the e↵ect already arises for l = 0, rel-
evant e.g. to Higgs production with a central jet veto.

As a concrete example, we consider the pp ! 2 jet
cross section with a veto on hard radiation in a rapidity
region �Y in between the two leading jets. This can be
imposed by requiring that any additional jet in the veto
region has a transverse momentum smaller than Q0. At
leading logarithmic accuracy, there is no sensitivity to
how the radiation is vetoed but only to the scale hier-
archy between Q0 and the transverse momentum of the
hard jets, which is of order the partonic center-of-mass
energy, Q =

p
ŝ =

p
x1x2s. For this “gap between jets”

observable, the following factorization formula holds [13]:

�(Q0) =
X

a1,a2=q,q̄,g

Z
dx1dx2

⇥
1X

m=4

⌦
Hm({n}, Q, µ) ⌦ Wm({n}, Q0, x1, x2, µ)

↵
.

(1)

The hard functions Hm describe all possible m-parton
processes a1 + a2 ! a3 + · · · + am and are obtained after
imposing appropriate kinematic constraints, such as cuts
on the transverse momenta and rapidities of the leading
jets. One then integrates over the phase space but for
fixed directions {n} = {n1, . . . , nm} of the m partons,
i.e.

Hm =
1

2ŝ

mY

i=3

Z
dEi E

d�3
i

(2⇡)d�2
|Mm({p})ihMm({p})|

⇥ (2⇡)d �(
p

ŝ � Etot) �(d�1)(~ptot) ⇥hard

��
p
 �

,

(2)
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�2!M (Q,Q0) =
X

a,b=q,q̄,g

Z
dx1dx2

1X

m=2+M
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operator in color space and in the 
infinite space of parton multiplicities

1 Introduction

µ
d

dµ
H

ab

l
({n}, Q, µ) = �

X

ml

H
ab

m
({n}, Q, µ)�H

ml
({n}, Q, µ) (1)

H
ab

m
({n}, Q, µ = Q)⌦

1X

l=m

Uml({n}, Q,Q0)⌦W
ab

l
({n}, Q0, x1, x2, µ = Q0) (2)

H
ab

m
({n}, Q)⌦

1X

l=m

Uml({n}, Q,Q0)⌦W
ab

l
({n}, Q0, x1, x2) (3)

U({n}, Q,Q0) = P exp

Z
Q

Q0

dµ

µ
�H({n}, Q, µ)

�
(4)

Thomas has shown that the fundamental color structures we need to analyze are

K2!M

m,n
=

⌦
H2!M ⌦̂�C . . . ⌦̂�C

| {z }
(n�m) times

�I
⌦̂�C . . . ⌦̂�C

| {z }
m times

�I
⌦̂�

↵
, (5)

where M � 0 is the number of final-state partons at Born level. We consider a generic

2 ! M hard-scattering process described by the hard function H2!M . The insertions of color

operators should be read from left to right. The relevant anomalous dimensions are given by

�C
=

X

i=1,2

⇥
4Ci 1� 4Ti,L � Ti,R �(nk � ni)

⇤
,

�I
= �8i⇡ (T1,L · T2,L � T1,R · T2,R) ,

� = 2

X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nk)

4⇡
W

k

ij
� 4

X

(ij)

Ti,L · Tj,R W
k0

ij
✓in(nk0) .

(6)

The labels i = 1, 2 refer to the initial-state partons, while the label k0 refers to the parton

emitted in the last step of the iteration. The additional p  n collinear gluons, which can

be emitted from the n insertions of �C
, are labeled by indices k1, . . . , kp. The symbol (ij) on

the sums in the expression for � runs over all (unordered) pairs of parton indices with i 6= j.
This sum includes both the initial-state and all final-state partons. We use the color-space

formalism, where Ti denotes a color generator acting on particle i. The superscripts L and R
are defined such that

⌦
HTi,L · Tj,R W

↵
⌘

⌦
T

a

i
HT

a

j
W

↵
=

⌦
HT

a

j
W T

a

i

↵
. (7)

The first n symbols ⌦̂ in (35) imply integrations over the directions nki of these collinear

partons, which simply has the e↵ect of replacing �(nk � ni) ! 1 in the expression for �C
.

The last ⌦̂ means an integration over the direction nM+1, which has the e↵ect of adding an

integral
R

d⌦(nM+1)
4⇡ in front of the second term in �. The trivial consequences of these angular

integrations is a result of the important fact that the relevant soft function in this process,

1

high scale

8
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Evaluate factorization theorem at low scale  

▸ low-energy matrix element: 

▸ hard-scattering functions: 

▸ expanding the solution in a power series generates arbitrarily high 
parton multiplicities starting from the  Born process

μs ∼ Q0

2 → M

ab
<latexit sha1_base64="SjE4HkHnqyXEcXKQWOMBKX9q+YA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY8FLx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzQYlCtu1V2ArBMvJxXI0RyUv/rDmKURV8gkNabnuQn6GdUomOSzUj81PKFsQke8Z6miETd+trh0Ri6sMiRhrG0pJAv190RGI2OmUWA7I4pjs+rNxf+8XorhjZ8JlaTIFVsuClNJMCbzt8lQaM5QTi2hTAt7K2FjqilDG07JhuCtvrxO2rWqd1Wt3dcrjUYeRxHO4BwuwYNraMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+AH3tjVM=</latexit>

Rm =4
X

(ij)

Ti,L · Tj,R

⇢h
�(nk � ni) ln

µ

2Ei
+ �(nk � nj) ln

µ

2Ej

i
�W

m+1
ij ⇥in(nm+1)

�

Vm =2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

⇢
� ln

µ
2

2Ei2Ej
+

Z
d⌦(nk)

4⇡
W

k
ij

�

� 8 i⇡
X

(ij)

(T1,L · T2,L � T1,R · T2,R)⇧ij (11)

(12)

X

(ij)

Ti,L · Tj,L ln
µ

2Ei
= �

X

i

Ti,L · Ti,L ln
µ

2Ei
= �

X

i

Ci ln
µ

2Ei
(13)

�
X

(ij)

Ti,L � Tj,R �(nk � ni) ln
µ

2Ei
= +

X

i

Ti,L � Ti,R �(nk � ni) ln
µ

2Ei
(14)

� = �+ �G +
X

i

�c
i ln

µ
2

ŝ

�(Q0) =
X

a1,a2=q,q̄,g

Z
dx1dx2

1X

m=4

⌦
Hm({n}, Q, µ)⌦Wm({n}, Q0, x1, x2, µ)

↵
. (15)

Wm({n}, Q0, x1, x2, µs) = fa1(x1) fa2(x2)1 . (16)fa/p(x1) fb/p(x2)1+O(↵s)
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Jet cross sections at high-energy colliders exhibit intricate patterns of logarithmically enhanced
higher-order corrections. In particular, so-called non-global logarithms emerge from soft radiation
emitted o↵ energetic partons inside jets. While this is a single-logarithmic e↵ect at lepton colliders,
at hadron colliders phase factors in the amplitudes lead to double-logarithmic corrections starting
at four-loop order. This e↵ect was discovered a long time ago, but not much is known about the
higher-order behavior of these terms and their process dependence. We derive, for the first time,
the all-order structure of these “super-leading logarithms” for generic 2 ! l scattering processes at
hadron colliders and resum them in closed form.

We thus evaluate

H
ab

m
({n}, Q, µs) =

X

lm

H
ab

l
({n}, Q,Q)P exp

"Z
Q

µs

dµ

µ
�H({n}, Q, µ)

#

lm

(1)
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Evaluate factorization theorem at low scale  

▸ anomalous-dimension matrix: 

▸ action on hard functions:

μs ∼ Q0

2

where Etot and ~ptot are the total energy and momentum
of the final-state particles in the partonic center-of-mass
frame. Note that the amplitude is squared in the sense of
a density matrix. We use the color-space formalism [14],
and the color indices of the amplitude |Mm({p})i and
its conjugate are not contracted. The color sum, indi-
cated by h. . . i in (1), is performed after the hard function
is combined with the function Wm, which encodes the
soft and collinear low-energy dynamics. Both quantities
depend on the directions {n} of the hard partons, and
after combining them the integrals over these directions
are performed, as indicated by the symbol ⌦.

The function ⇥hard enforces the constraints on the hard
jets and ensures that no hard radiation enters the veto
region. For the validity of formula (1) it is important
that these constraints are compatible with factorization.
The low-energy matrix elements Wm consist of squared
matrix elements of m soft Wilson lines for the incoming
and outgoing partons together with two collinear fields
for the incoming particles. They need to be evaluated in
SCET with Glauber gluons [16], which can mediate non-
trivial interactions between soft and collinear partons.
The functions Wm contain rapidity logarithms, which in-
duce a logarithmic dependence on the scale ratio

p
ŝ/Q0

[17, 18]. It would be interesting to analyze the structure
of these matrix elements in more detail in future work.
Here we just note that the additional dependence on the
hard scale is single logarithmic, while we focus on the
leading double-logarithmic corrections in this Letter.

To obtain the leading double logarithms, we solve the
RG equation for the hard function iteratively and evolve
it from the hard scale µh ⇠

p
ŝ to the low scale µs ⇠ Q0.

As the starting point of the evolution we use the lowest-
order (Born level) hard function, which for a two-jet cross
section involves four partons. We thus evaluate

H4(µh) U(µh, µs) = H4(µh)P exp

Z µh

µs

dµ

µ
�H(µ)

�

= H4(µh) +

Z µh

µs

dµ

µ
H4(µh)�H(µ) (3)

+

Z µh

µs

dµ

µ

Z µh

µ

dµ0

µ0 H4(µh)�H(µ0)�H(µ) + . . . .

Below, we will identify the SLLs that arise in the prod-
ucts of anomalous dimensions and solve a recursion re-
lation for them. As a final step, we compute the cross
section in (1) using the lowest-order expression for Wm

at the low scale µs ⇠ Q0. At this order the soft Wilson
lines are trivial and the collinear matrix elements reduce
to the usual parton distribution functions, i.e.

Wm({n}, Q0, x1, x2, µs) = fa1(x1) fa2(x2)1 . (4)

The one-loop anomalous dimension matrix in (3) can
be split into two parts: �H = �C 1 + �S . The first
part concerns the purely collinear singularities and is

present also for inclusive cross sections. It is given by
the usual DGLAP kernels and involves a convolution over
the momentum fractions of the incoming partons. The
second part, �S , contains soft as well as soft + collinear
terms. This part is absent for inclusive cross sections,
but present in our case because of the restrictions on
hard radiation in the veto region. The soft + collinear
piece generates the SLLs. The soft part of the anoma-
lous dimension takes the form [8, 9]

�S =
↵s

4⇡

0

BBBBB@

V4 R4 0 0 · · ·
0 V5 R5 0 · · ·
0 0 V6 R6 · · ·
0 0 0 V7 · · ·
...

...
...

...
. . .

1

CCCCCA
+ . . . . (5)

The virtual contributions Vm leave the number of par-
tons unchanged, while the real-emission operators Rm

add one extra parton to a given hard function.
Due to the correspondence between UV and IR sin-

gularities [19], the anomalous dimension �S can be ex-
tracted by considering soft limits of hard-scattering am-
plitudes [9, 13]. For the present discussion, it is useful to
write it in the form [20]

Vm = Vm + V G +
X

i=1,2

V c
i ln

µ2

ŝ
,

Rm = Rm +
X

i=1,2

Rc
i ln

µ2

ŝ
,

(6)

with

Vm = 2
X

(ij)

�
Ti,L · Tj,L + Ti,R · Tj,R

� Z
d⌦(nk)

4⇡
W

k
ij ,

V c
i = 4Ci 1 ,

V G = �8i⇡
�
T1,L · T2,L � T1,R · T2,R

�
, (7)

Rm = �4
X

(ij)

Ti,L � Tj,R W
m+1
ij ⇥hard(nm+1) ,

Rc
i = �4Ti,L � Ti,R �(nk � ni) .

Before discussing the di↵erent parts in detail, let us ex-
plain how they act on a generic hard function Hm. The
color generators Ti,L act on the amplitude and hence
multiply Hm from the left, while the generators Tj,R act
on the conjugate amplitude and stand on the right of
Hm. The color matrices in the virtual part act on the
color indices of the m partons, Ti · Tj =

P
a T a

i T a
j , and

Ti ·Ti = Ci 1 is the quadratic Casimir operator of parton
i. This is the usual color-space notation. The color ma-
trices in the real-emission terms Rm are di↵erent. They
take an amplitude with m partons and associated color
indices and map it to an amplitude with (m+1) partons,
see Figure 1. Explicitly, we have

Hm Ti,L � Tj,R = T a
i Hm T ã

j , (8)

H
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Figure 1: Action of the operator the real part Rm and the virtual piece Vm

of the anomalous dimension on the hard function Hm. The sums run over
all pairs of unordered indices i, j = 1 . . . m. Due to the emitted gluon (blue),
the product HmRm defines a hard function with m + 1 external legs, while
the virtual correction (red) HmVm has m legs.

Hm RC
1 = ...

...

11

22

M M†

Hm V I = M M† + M M†

Figure 2: Action of the imaginary part VI (red dotted line) and the collinear
real-emission piece RC on the hard function. After the simplifications dis-
cussed in the text, these parts only involve legs 1 and 2. The real correc-
tions HmRC involve one additional hard gluon (dashed blue line) which is
collinear to one of the incoming legs.

1

FIG. 1. Action of the real-emission operator Rm and the
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg. The notation (ij) on the
sums in (6) indicates a pair of unordered indices i, j =
1, . . . , m. We use a bar to indicate that the collinear
limits of the emissions are subtracted (see e.g. [21]), i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg. The notation (ij) on the
sums in (6) indicates a pair of unordered indices i, j =
1, . . . , m. We use a bar to indicate that the collinear
limits of the emissions are subtracted (see e.g. [21]), i.e.
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The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,
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i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
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Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that
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The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
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i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(
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Detailed structure of the anomalous-dimension coefficients 

▸ virtual and real contributions contain collinear singularities, which 
must be regularized and subtracted: 

▸ with:
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1 Preliminaries

We use the notations introduced in our letter [1], where we have shown that the “gap between
jets” cross section for a 2 ! M hard process satisfies the factorization formula [2]

�2!M(Q,Q0) =
X

a1,a2=q,q̄,g

Z
dx1dx2

1X

m=2+M

⌦
Hm({n}, Q, µ)⌦Wm({n}, Q0, x1, x2, µ)

↵
. (1)

The hard functions Hm describe all possible m-parton processes a1 + a2 ! a3 + · · ·+ am and
are obtained after imposing appropriate kinematic constraints, such as cuts on the transverse
momenta and rapidities of the leading jets. One then integrates over the phase space but for
fixed directions {n} = {n1, . . . , nm} of the m partons. The color sum, indicated by h. . . i in
(1), is performed after the hard functions are combined with the functions Wm, which encode
the soft and collinear low-energy dynamics. Both quantities depend on the directions {n} of
the hard partons, and after combining them the integrals over these directions are performed,
as indicated by the symbol ⌦.

In [1] we have defined the basis color traces as

Crn =
⌦
H2+M (�c)r V G (�c)n�r

V
G �⌦ 1

↵
, (2)

where 0  r  n, and the hard functions are normalized such that hH2+Mi = 1. The insertions
of color operators should be read from left to right. They account for the evolution of the
hard functions from the hard scale µh ⇠ Q to the soft scale µs ⇠ Q0 The relevant anomalous
dimensions are given by

�c =
X

i=1,2

⇥
4Ci 1� 4Ti,L � Ti,R �(nk � ni)

⇤
,

V
G = �8i⇡ (T1,L · T2,L � T1,R · T2,R) ,

� = 2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nk)

4⇡
W

k
ij � 4

X

(ij)

Ti,L � Tj,R W
k0
ij ⇥in(nk0) .

(3)

The labels i = 1, 2 refer to the initial-state partons, while the label k0 refers to the parton
emitted in the last step of the evolution. The additional p  n collinear gluons, which can be
emitted from the n insertions of �c, are labeled by indices k1, . . . , kp (reading the insertions
of �c from right to left). Physically, the operator �c accounts for virtual corrections on or
collinear emissions o↵ one of the initial-state partons. These are the terms which give rise
to double-logarithmic corrections to the cross section. The operator �, on the other hand,
accounts for virtual corrections or collinear emissions connecting a pair of di↵erent partons
with indices i 6= j. Here, the symbol (ij) on the sums runs over all (unordered) pairs of parton

1
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Comments on notation 

▸ color generators TL,i act on the amplitude (multiply hard functions 
from the left) 

▸ color generators TR,i act on the complex conjugate amplitude 
(multiply hard functions from the right) 

▸ real-emission terms take an amplitude with m partons and turn it 
into an amplitude with (m+1) partons: 

where  are color indices of the emitted gluon (symbol  indicates 
the additional color space of the new parton)

a, ã ∘
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2

where Etot and ~ptot are the total energy and momentum
of the final-state particles in the partonic center-of-mass
frame. Note that the amplitude is squared in the sense of
a density matrix. We use the color-space formalism [14],
and the color indices of the amplitude |Mm({p})i and
its conjugate are not contracted. The color sum, indi-
cated by h. . . i in (1), is performed after the hard function
is combined with the function Wm, which encodes the
soft and collinear low-energy dynamics. Both quantities
depend on the directions {n} of the hard partons, and
after combining them the integrals over these directions
are performed, as indicated by the symbol ⌦.

The function ⇥hard enforces the constraints on the hard
jets and ensures that no hard radiation enters the veto
region. For the validity of formula (1) it is important
that these constraints are compatible with factorization.
The low-energy matrix elements Wm consist of squared
matrix elements of m soft Wilson lines for the incoming
and outgoing partons together with two collinear fields
for the incoming particles. They need to be evaluated in
SCET with Glauber gluons [16], which can mediate non-
trivial interactions between soft and collinear partons.
The functions Wm contain rapidity logarithms, which in-
duce a logarithmic dependence on the scale ratio

p
ŝ/Q0

[17, 18]. It would be interesting to analyze the structure
of these matrix elements in more detail in future work.
Here we just note that the additional dependence on the
hard scale is single logarithmic, while we focus on the
leading double-logarithmic corrections in this Letter.

To obtain the leading double logarithms, we solve the
RG equation for the hard function iteratively and evolve
it from the hard scale µh ⇠

p
ŝ to the low scale µs ⇠ Q0.

As the starting point of the evolution we use the lowest-
order (Born level) hard function, which for a two-jet cross
section involves four partons. We thus evaluate

H4(µh) U(µh, µs) = H4(µh)P exp

Z µh

µs

dµ

µ
�H(µ)

�

= H4(µh) +

Z µh

µs

dµ

µ
H4(µh)�H(µ) (3)

+

Z µh

µs

dµ

µ

Z µh

µ

dµ0

µ0 H4(µh)�H(µ0)�H(µ) + . . . .

Below, we will identify the SLLs that arise in the prod-
ucts of anomalous dimensions and solve a recursion re-
lation for them. As a final step, we compute the cross
section in (1) using the lowest-order expression for Wm

at the low scale µs ⇠ Q0. At this order the soft Wilson
lines are trivial and the collinear matrix elements reduce
to the usual parton distribution functions, i.e.

Wm({n}, Q0, x1, x2, µs) = fa1(x1) fa2(x2)1 . (4)

The one-loop anomalous dimension matrix in (3) can
be split into two parts: �H = �C 1 + �S . The first
part concerns the purely collinear singularities and is

present also for inclusive cross sections. It is given by
the usual DGLAP kernels and involves a convolution over
the momentum fractions of the incoming partons. The
second part, �S , contains soft as well as soft + collinear
terms. This part is absent for inclusive cross sections,
but present in our case because of the restrictions on
hard radiation in the veto region. The soft + collinear
piece generates the SLLs. The soft part of the anoma-
lous dimension takes the form [8, 9]

�S =
↵s

4⇡

0

BBBBB@

V4 R4 0 0 · · ·
0 V5 R5 0 · · ·
0 0 V6 R6 · · ·
0 0 0 V7 · · ·
...

...
...

...
. . .

1

CCCCCA
+ . . . . (5)

The virtual contributions Vm leave the number of par-
tons unchanged, while the real-emission operators Rm

add one extra parton to a given hard function.
Due to the correspondence between UV and IR sin-

gularities [19], the anomalous dimension �S can be ex-
tracted by considering soft limits of hard-scattering am-
plitudes [9, 13]. For the present discussion, it is useful to
write it in the form [20]
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Before discussing the di↵erent parts in detail, let us ex-
plain how they act on a generic hard function Hm. The
color generators Ti,L act on the amplitude and hence
multiply Hm from the left, while the generators Tj,R act
on the conjugate amplitude and stand on the right of
Hm. The color matrices in the virtual part act on the
color indices of the m partons, Ti · Tj =

P
a T a

i T a
j , and

Ti ·Ti = Ci 1 is the quadratic Casimir operator of parton
i. This is the usual color-space notation. The color ma-
trices in the real-emission terms Rm are di↵erent. They
take an amplitude with m partons and associated color
indices and map it to an amplitude with (m+1) partons,
see Figure 1. Explicitly, we have

Hm Ti,L � Tj,R = T a
i Hm T ã

j , (8)
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Let us note that both Rm and Vm su↵er from collinear divergences. For e+e� observ-

ables analyzed in [2] these singularities cancel when the anomalous dimension matrix acts

on the soft functions and it was thus possible to work with the expressions (3.2) despite the

presence of these divergence in the individual expressions. Since the collinear divergences

cancel, the leading logarithms to processes such as the wide-angle cross section are ↵n
s Ln.

The discovery made in [3, 4] was that in the presence of nontrivial phase factors, this

cancellation gets spoiled, which leads to additional collinear logarithms which they called

super-leading. The leading super-leading logarithmic correction was found to be suppressed

by ↵4
sL

5 compared to the tree-level process qq ! qq studied in these papers.

To analyze this situation, we should extract the collinear divergences and work with a

form of the anomalous dimension which is well-defined even when partons become collinear.

To do so, consider the phase-space integral
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and we analyze the action of the integral on a test function f(nk). The energy integral in

(4.1) has a soft divergence, which from which we extracted the anomalous dimension (3.2)

for the case when there are no collinear divergences. We now analyze the case where these

are present.
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and the collinear divergence is now manifest. To obtain the associated anomalous dimen-
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Z

dd�1⌦k

4⇡
�(nk � ni)f(nk) = f(ni) . (4.5)
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where Etot and ~ptot are the total energy and momentum
of the final-state particles in the partonic center-of-mass
frame. Note that the amplitude is squared in the sense of
a density matrix. We use the color-space formalism [14],
and the color indices of the amplitude |Mm({p})i and
its conjugate are not contracted. The color sum, indi-
cated by h. . . i in (1), is performed after the hard function
is combined with the function Wm, which encodes the
soft and collinear low-energy dynamics. Both quantities
depend on the directions {n} of the hard partons, and
after combining them the integrals over these directions
are performed, as indicated by the symbol ⌦.

The function ⇥hard enforces the constraints on the hard
jets and ensures that no hard radiation enters the veto
region. For the validity of formula (1) it is important
that these constraints are compatible with factorization.
The low-energy matrix elements Wm consist of squared
matrix elements of m soft Wilson lines for the incoming
and outgoing partons together with two collinear fields
for the incoming particles. They need to be evaluated in
SCET with Glauber gluons [16], which can mediate non-
trivial interactions between soft and collinear partons.
The functions Wm contain rapidity logarithms, which in-
duce a logarithmic dependence on the scale ratio

p
ŝ/Q0

[17, 18]. It would be interesting to analyze the structure
of these matrix elements in more detail in future work.
Here we just note that the additional dependence on the
hard scale is single logarithmic, while we focus on the
leading double-logarithmic corrections in this Letter.

To obtain the leading double logarithms, we solve the
RG equation for the hard function iteratively and evolve
it from the hard scale µh ⇠

p
ŝ to the low scale µs ⇠ Q0.

As the starting point of the evolution we use the lowest-
order (Born level) hard function, which for a two-jet cross
section involves four partons. We thus evaluate

H4(µh) U(µh, µs) = H4(µh)P exp

Z µh

µs

dµ

µ
�H(µ)

�

= H4(µh) +

Z µh

µs

dµ

µ
H4(µh)�H(µ) (3)

+

Z µh

µs

dµ

µ

Z µh

µ

dµ0

µ0 H4(µh)�H(µ0)�H(µ) + . . . .

Below, we will identify the SLLs that arise in the prod-
ucts of anomalous dimensions and solve a recursion re-
lation for them. As a final step, we compute the cross
section in (1) using the lowest-order expression for Wm

at the low scale µs ⇠ Q0. At this order the soft Wilson
lines are trivial and the collinear matrix elements reduce
to the usual parton distribution functions, i.e.

Wm({n}, Q0, x1, x2, µs) = fa1(x1) fa2(x2)1 . (4)

The one-loop anomalous dimension matrix in (3) can
be split into two parts: �H = �C 1 + �S . The first
part concerns the purely collinear singularities and is

present also for inclusive cross sections. It is given by
the usual DGLAP kernels and involves a convolution over
the momentum fractions of the incoming partons. The
second part, �S , contains soft as well as soft + collinear
terms. This part is absent for inclusive cross sections,
but present in our case because of the restrictions on
hard radiation in the veto region. The soft + collinear
piece generates the SLLs. The soft part of the anoma-
lous dimension takes the form [8, 9]

�S =
↵s

4⇡

0
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0 0 V6 R6 · · ·
0 0 0 V7 · · ·
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+ . . . . (5)

The virtual contributions Vm leave the number of par-
tons unchanged, while the real-emission operators Rm

add one extra parton to a given hard function.
Due to the correspondence between UV and IR sin-

gularities [19], the anomalous dimension �S can be ex-
tracted by considering soft limits of hard-scattering am-
plitudes [9, 13]. For the present discussion, it is useful to
write it in the form [20]

Vm = Vm + V G +
X

i=1,2

V c
i ln

µ2

ŝ
,

Rm = Rm +
X

i=1,2

Rc
i ln
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ŝ
,

(6)

with
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X

(ij)

�
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� Z
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4⇡
W

k
ij ,

V c
i = 4Ci 1 ,

V G = �8i⇡
�
T1,L · T2,L � T1,R · T2,R

�
, (7)

Rm = �4
X

(ij)

Ti,L � Tj,R W
m+1
ij ⇥hard(nm+1) ,

Rc
i = �4Ti,L � Ti,R �(nk � ni) .

Before discussing the di↵erent parts in detail, let us ex-
plain how they act on a generic hard function Hm. The
color generators Ti,L act on the amplitude and hence
multiply Hm from the left, while the generators Tj,R act
on the conjugate amplitude and stand on the right of
Hm. The color matrices in the virtual part act on the
color indices of the m partons, Ti · Tj =

P
a T a

i T a
j , and

Ti · Ti = Ci 1 is the quadratic Casimir operator of par-
ton i. This is the usual color-space notation. The color
matrices in the real-emission terms Rm act di↵erently.
They take an amplitude with m partons and associated
color indices and map it to an amplitude with (m + 1)
partons, see Figure 1. Explicitly, we have

Hm Ti,L � Tj,R = T a
i Hm T ã

j , (8)
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1 Preliminaries

We use the notations introduced in our letter [1], where we have shown that the “gap between
jets” cross section for a 2 ! M hard process satisfies the factorization formula [2]

�2!M(Q,Q0) =
X

a1,a2=q,q̄,g

Z
dx1dx2

1X

m=2+M

⌦
Hm({n}, Q, µ)⌦Wm({n}, Q0, x1, x2, µ)

↵
. (1)

The hard functions Hm describe all possible m-parton processes a1 + a2 ! a3 + · · ·+ am and
are obtained after imposing appropriate kinematic constraints, such as cuts on the transverse
momenta and rapidities of the leading jets. One then integrates over the phase space but for
fixed directions {n} = {n1, . . . , nm} of the m partons. The color sum, indicated by h. . . i in
(1), is performed after the hard functions are combined with the functions Wm, which encode
the soft and collinear low-energy dynamics. Both quantities depend on the directions {n} of
the hard partons, and after combining them the integrals over these directions are performed,
as indicated by the symbol ⌦.

In [1] we have defined the basis color traces as

Crn =
⌦
H2+M (�c)r V G (�c)n�r

V
G �⌦ 1

↵
, (2)

where 0  r  n, and the hard functions are normalized such that hH2+Mi = 1. The insertions
of color operators should be read from left to right. They account for the evolution of the
hard functions from the hard scale µh ⇠ Q to the soft scale µs ⇠ Q0 The relevant anomalous
dimensions are given by

�c =
X

i=1,2

⇥
4Ci 1� 4Ti,L � Ti,R �(nk � ni)

⇤
,

V
G = �8i⇡ (T1,L · T2,L � T1,R · T2,R) ,

� = 2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nk)

4⇡
W

k
ij � 4

X

(ij)

Ti,L � Tj,R W
k0
ij ⇥in(nk0) .

(3)

The labels i = 1, 2 refer to the initial-state partons, while the label k0 refers to the parton
emitted in the last step of the evolution. The additional p  n collinear gluons, which can be
emitted from the n insertions of �c, are labeled by indices k1, . . . , kp (reading the insertions
of �c from right to left). Physically, the operator �c accounts for virtual corrections on or
collinear emissions o↵ one of the initial-state partons. These are the terms which give rise
to double-logarithmic corrections to the cross section. The operator �, on the other hand,
accounts for virtual corrections or collinear emissions connecting a pair of di↵erent partons
with indices i 6= j. Here, the symbol (ij) on the sums runs over all (unordered) pairs of parton

1
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SLLs arise from the terms in                                                        with the 

highest number of insertions of Γc 

▸ three properties simplify the calculation: 

▸ color coherence in absence of Glauber phases (sum of soft emissions 
off collinear partons has same effect as soft emission of parent parton): 

▸ collinear safety (singularities from real and virtual emission cancel): 

▸ cyclicity of the trace:
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Jet cross sections at high-energy colliders exhibit intricate patterns of logarithmically enhanced
higher-order corrections. In particular, so-called non-global logarithms emerge from soft radiation
emitted o↵ energetic partons inside jets. While this is a single-logarithmic e↵ect at lepton colliders,
at hadron colliders phase factors in the amplitudes lead to double-logarithmic corrections starting
at four-loop order. This e↵ect was discovered a long time ago, but not much is known about the
higher-order behavior of these terms and their process dependence. We derive, for the first time,
the all-order structure of these “super-leading logarithms” for generic 2 ! l scattering processes at
hadron colliders and resum them in closed form.
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Figure 1: Action of the operator the real part Rm and the virtual piece Vm

of the anomalous dimension on the hard function Hm. The sums run over
all pairs of unordered indices i, j = 1 . . . m. Due to the emitted gluon (blue),
the product HmRm defines a hard function with m + 1 external legs, while
the virtual correction (red) HmVm has m legs.
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Figure 2: Action of the imaginary part VI (red dotted line) and the collinear
real-emission piece RC on the hard function. After the simplifications dis-
cussed in the text, these parts only involve legs 1 and 2. The real correc-
tions HmRC involve one additional hard gluon (dashed blue line) which is
collinear to one of the incoming legs.
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FIG. 1. Action of the real-emission operator Rm and the

virtual piece Vm on a hard function Hm. Due to the emitted

gluon (blue), the product Hm Rm defines a hard function

with (m+ 1) external legs.

where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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tions HmRC involve one additional hard gluon (dashed blue line) which is
collinear to one of the incoming legs.
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)
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which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)
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which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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SLLs arise from the terms in                                                        with the 

highest number of insertions of Γc 

▸ under the color trace, insertions of Γc are non-zero only if they come 
in conjunction with (at least) two Glauber phases and one Γ 

▸ relevant color traces:
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Jet cross sections at high-energy colliders exhibit intricate patterns of logarithmically enhanced
higher-order corrections. In particular, so-called non-global logarithms emerge from soft radiation
emitted o↵ energetic partons inside jets. While this is a single-logarithmic e↵ect at lepton colliders,
at hadron colliders phase factors in the amplitudes lead to double-logarithmic corrections starting
at four-loop order. This e↵ect was discovered a long time ago, but not much is known about the
higher-order behavior of these terms and their process dependence. We derive, for the first time,
the all-order structure of these “super-leading logarithms” for generic 2 ! l scattering processes at
hadron colliders and resum them in closed form.
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the virtual correction (red) HmVm has m legs.
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Figure 2: Action of the imaginary part VI (red dotted line) and the collinear
real-emission piece RC on the hard function. After the simplifications dis-
cussed in the text, these parts only involve legs 1 and 2. The real correc-
tions HmRC involve one additional hard gluon (dashed blue line) which is
collinear to one of the incoming legs.
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s
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which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
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ni · nk nj · nk
� �(nk � ni)
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. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
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i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.

2 ! M
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2.1 Insertions of �c

We first evaluate the action of the right-most factor of �c in the hard function H in (8) on
the result shown above, assuming that (n� r) � 1 (otherwise this step is skipped). We obtain

⌦
H�c

V
G �⌦ 1

↵
= �256⇡fabc

X

j>2

Jj
X

i=1,2

⌦
HCi T

a
1 T

b
2 T

c
j �HTi,L � Ti,R T

a
1 T

b
2 T

c
j

↵
, (14)

where now
H = H2+M (�c)r V G (�c)n�r�1 (15)

contains one insertion of �c less than before. For the term involving the � symbol in (14) we
need to distinguish the two cases where parton j coincides with the collinear gluon k1 emitted
from the explicit factor �c, and where it is one of the remaining partons. Using the definition
of the � symbol shown in (5), we find
X

j>2

Jj
⌦
HTi,L � Ti,R T

a
1 T

b
2 T

c
j

↵
=

X

j>2

0Jj
⌦
HT

A
i T

a
1 T

b
2 T

c
j T

A
i

↵
� ifcBA Jk1

⌦
HT

B
i T

a
1 T

b
2 T

A
i

↵
,

(16)
where the prime on the sum in the first term means that j 6= k1. After summing over
i = 1, 2, we find that the last term on the right-hand side vanishes after contraction with fabc.
Physically, this means that the (virtual or real) gluon emitted by the insertion of � does not
attach to the collinear gluon emitted by the insertion of �c. To arrive at this result, we have
used the identity

faABfbBCfcCA =
Nc

2
fabc . (17)

Considering the first term in (16), our strategy is to move the color generator T A
i which sits

next to H all the way to the right, where it multiplies the second insertion of T A
i to produce

a factor Ci, yielding a contribution which cancels the first term on the right-hand side of (14).
The only leftover contributions are those from the commutator terms, and we obtain

⌦
H�c

V
G �⌦ 1

↵
= �64⇡ (4Nc)fabc

X

j>2

0Jj
⌦
HT

a
1 T

b
2 T

c
j

↵
. (18)

Surprisingly, we find that the insertion of �c has the e↵ect of reproducing the previous structure
(11) up to an overall color factor (4Nc), combined with the restriction that the sum over j no
longer contains the collinear gluon k1.

We can repeat this argument for the remaining (n�r�1) insertions of �c on the right-hand
side of (15), finding

⌦
H (�c)n�r

V
G �⌦ 1

↵
= �64⇡ (4Nc)

n�r fabc
X

j>2

0Jj
⌦
HT

a
1 T

b
2 T

c
j

↵
, (19)

where now
H = H2+M (�c)r V G . (20)

The prime on the sum over j now means that the this sum does not include any of the collinear
gluons emitted from the (n� r) insertions of �c. Importantly, however, the sum does include
the collinear emissions of the insertions of �c contained in the structure H.

4

Neubert Part B2 EFT2

define � = Vm + Rm. The collinear singularities in the soft anomalous dimension are encoded in the
quantity

�c =
X

i=1,2

4
⇥
Ci 1� Ti,L � Ti,R �(nm+1 � ni)

⇤
, (12)

which enters the anomalous dimension multiplied by ln(µ2
/ŝ), where

p
ŝ = Q is the partonic center-

of-mass energy. When inserted into (8) this gives rise to double logarithms, which are the source of the
SLLs. All final-state collinear singularities cancel between real and virtual contributions, and for this
reason only the initial-state pieces (with i = 1, 2) must be kept. The cancellation for the initial-state
terms is spoiled by the complex Coulomb phases in (3), which are contained in [17]

V G = �8i⇡ (T1,L · T2,L � T1,R · T2,R) . (13)

Color conservation implies that these phases are only relevant for processes involving (at least) two
colored partons in the initial state. The color generators Ti,L act on the amplitude and hence multiply
the hard functions Hm from the left, while the generators Tj,R act on the conjugate amplitude and
stand on the right of Hm. The color matrices in the virtual part act on the color indices of the m

partons, Ti · Tj =
P

a
T a

i
T a

j
, and Ti · Ti = Ci 1 is the quadratic Casimir operator of parton i. The

color matrices in the real-emission terms Rm and in the second term in (12) are di↵erent. They take
an amplitude with m partons and map it to an amplitude with (m + 1) partons. Explicitly, we have
Hm Ti,L � Tj,R = T a

i
Hm T ã

j
, where the color indices a and ã refer to the emitted gluon. We use the

symbol � to indicate the presence of the additional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act on these indices.

Collinear safely, the fact that the singularities associated with real and virtual collinear emissions
cancel against each other, ensures that under the color trace in (8) the operator �c vanishes whenever
it stands left to the 1. Combined with the fact that the commutator [�c

,�] vanishes under the trace
in (8), this implies that Sudakov double logarithms arise only in the presence of the Coulomb phases
V G. It follows that for a given 2 ! 2 scattering process the SLL at (3 + n)th order in perturbation
theory is associated with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G �⌦ 1

↵
, (14)

where 0  r  n. Each insertion of �c gives rise to a double logarithm. This explains why the SLLs
first appear at four-loop order. However, the three-loop term (n = 0) originates from the same color
structures and is numerically significant, even though it only involves the imaginary part ⇡ = | ln(�1)|
of the large logarithm. Neglecting the running of the coupling ↵s, setting µh = Q =

p
ŝ and µs = Q0,

and evaluating the integrals over µ arising in the Taylor expansion of the matrix exponential in (8),
we find for the contribution of SLLs to the cross section

�SLL = �Born

1X

n=0

⇣
↵s

4⇡

⌘
n+3

L
2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn , (15)

where L = ln(Q/Q0). Starting from four-loop order two large logarithms per loop arise.
For the simplest case of quark-initiated 2 ! 2 scattering, we have succeeded to evaluate the color

traces Crn in closed form in terms of only three non-trivial color structures [50]. The result reads

Crn = 28�r
⇡
2 (4Nc)

n

⇢ X

j=3,4

Jj

⌦
H4

⇥
(T2 � T1) · Tj + 2r�1

Nc (�1 � �2) dabc T
a

1 T b

2 T
c

j

⇤↵

+ 2 (1 � �r0) J2
⌦
H4

⇥
CF + (2r � 1)T1 · T2

⇤↵�
,

(16)

where �i = 1 for an initial-state antiquark and �i = �1 for an initial-state quark. The sum in the
first term runs over the final-state partons. The structure H4 is normalized such that hH4i = 1. All
information about the phase-space restrictions is contained in the angular integrals

Jj =

Z
d⌦(nk)

4⇡

⇣
W

k

1j � W
k

2j

⌘
⇥veto(nk) ; with W

k

ij =
ni · nj

ni · nk nj · nk

, (17)

8
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General result (valid for arbitrary representations) 

▸ basis of 10 color structures:
T. Becher, M. Neubert, D. Y. Shao: in preparation 

where
F (6)
abcd = �fBbefCce F

(4)
aBCd . (32)

This would seem to generate increasingly complicated tensor structures, but using the explicit
form of F (4)

abcd in (27) we find that this is, in fact, not the case. Instead, we obtain

F (6)
abcd = F (2)

abcd �Nc �ad �bc �
N2

c

8
dadedbce . (33)

To arrive at this result, we have defined the matrices

(Da)bc = dabc (34)

and used the trace relation [7]

Tr
�
F aF bDc

�
=

Nc

2
dabc . (35)

Generalizing relation (33) to higher orders leads to

F (4+2n)
abcd = F (2n)

abcd + (�Nc)
n �ad �bc �

1

2

✓
Nc

2

◆n+1

dadedbce (36)

for all n 2 N. It follows that any symbol F (2n)
abcd for n � 3 can be reduced to the two symbols

in (27) plus terms proportional to �ad �bc and dadedbce. In other words, only four color tensors
are generated by successive applications of �c, namely

fabefcde , dadedbce , �ab �cd , �ad �bc . (37)

There is no need to symmetrize the first and the third structure in the index pair (b, c), because
the color trace ⌦

H
�
T

a
2 {T b

1 ,T
c
1 }T d

j � (1 $ 2)
�↵

(38)

with which these structures are contracted already has this symmetry.
At this point, we arrive at the result

Crn = �256⇡2 (4Nc)
n�r

"
M+2X

j=3

Jj

4X

i=1

c(r)i

⌦
H2!M O

(j)
i

↵
+ terms proportional to J12

#
, (39)

where the basis operators are defined as

O
(j)
1 = fabefcde T

a
2 {T b

1 ,T
c
1 }T d

j � (1 $ 2) ,

O
(j)
2 = dadedbce T

a
2 {T b

1 ,T
c
1 }T d

j � (1 $ 2) ,

O
(j)
3 = T

a
2 {T a

1 ,T
b
1 }T b

j � (1 $ 2) ,

O
(j)
4 = 2C1 T2 · Tj � 2C2 T1 · Tj .

(40)

7

linearly independent color structures must be generalized to

S1 = fabefcde {T b
1 ,T

c
1 } {T a

2 ,T
d
2 } ,

S2 = dadedbce {T b
1 ,T

c
1 } {T a

2 ,T
d
2 } ,

S3 = dadedbce
h
T

a
2

�
T

b
1 T

c
1 T

d
1

�
+
+ (1 $ 2)

i
,

S4 = {T a
1 ,T

b
1 } {T a

2 ,T
b
2 } ,

S5 = T1 · T2 ,

S6 = 1 .

(49)

In other words, the linear combinations of the di↵erent structures in each line of (45) are
broken up in their substructures. With this generalization, we obtain the mappings

S1 ! 8Nc S1 + 2Nc S2 + 8S4 + 32C1C2 S6 ,

S2 ! 4Nc S2 ,

S3 ! 4Nc S3 ,

S4 ! 8S1 + 8Nc S4 ,

S5 ! 4Nc S5 ,

S6 ! 0 .

(50)

Therefore, the basis {Si} closes under repeated application of �c.
At this point, we obtain the final result

Crn = �256⇡2 (4Nc)
n�r

"
M+2X

j=3

Jj

4X

i=1

c(r)i

⌦
H2!M O

(j)
i

↵
� J12

6X

i=1

d(r)i

⌦
H2!M Si

↵
#
, (51)

where the basis operators have been defined in (40) and (49). It follows from (21) that the

coe�cients d(r)i vanish for r = 0. We find that these coe�cients obey the recurrence relations

d(s+1)
1 = 2Nc c

(s)
1 + 4c(s)3 + 8Nc d

(s)
1 + 8d(s)4 ,

d(s+1)
2 = Nc c

(s)
1 + 2Nc d

(s)
1 + 4Nc d

(s)
2 ,

d(s+1)
3 = 2Nc c

(s)
1 + 4Nc d

(s)
3 ,

d(s+1)
4 = 4c(s)1 + 2Nc c

(s)
3 + 8d(s)1 + 8Nc d

(s)
4 ,

d(s+1)
5 = 4 (C1 + C2)

h
4c(s)1 +Nc c

(s)
3 �Nc c

(s)
4

i
� 2Nc (N2

c + 8)

3
c(s)1 � 4N2

c c
(s)
3 + 4Nc d

(s)
5 ,

d(s+1)
6 = 8C1C2

h
2c(s)1 �Nc c

(s)
4 + 4d(s)1

i
.

(52)
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linearly independent color structures must be generalized to

S1 = fabefcde {T b
1 ,T

c
1 } {T a

2 ,T
d
2 } ,

S2 = dadedbce {T b
1 ,T

c
1 } {T a

2 ,T
d
2 } ,

S3 = dadedbce
h
T

a
2

�
T

b
1 T

c
1 T

d
1

�
+
+ (1 $ 2)

i
,

S4 = {T a
1 ,T

b
1 } {T a

2 ,T
b
2 } ,

S5 = T1 · T2 ,

S6 = 1 .

(49)

In other words, the linear combinations of the di↵erent structures in each line of (45) are
broken up in their substructures. With this generalization, we obtain the mappings

S1 ! 8Nc S1 + 2Nc S2 + 8S4 + 32C1C2 S6 ,

S2 ! 4Nc S2 ,

S3 ! 4Nc S3 ,

S4 ! 8S1 + 8Nc S4 ,

S5 ! 4Nc S5 ,

S6 ! 0 .

(50)

Therefore, the basis {Si} closes under repeated application of �c.
At this point, we obtain the final result

Crn = �256⇡2 (4Nc)
n�r

"
M+2X

j=3

Jj

4X

i=1

c(r)i

⌦
H2!M O

(j)
i

↵
� J12

6X

i=1

d(r)i

⌦
H2!M Si

↵
#
, (51)

where the basis operators have been defined in (40) and (49). It follows from (21) that the

coe�cients d(r)i vanish for r = 0. We find that these coe�cients obey the recurrence relations

d(s+1)
1 = 2Nc c

(s)
1 + 4c(s)3 + 8Nc d

(s)
1 + 8d(s)4 ,

d(s+1)
2 = Nc c

(s)
1 + 2Nc d

(s)
1 + 4Nc d

(s)
2 ,

d(s+1)
3 = 2Nc c

(s)
1 + 4Nc d

(s)
3 ,

d(s+1)
4 = 4c(s)1 + 2Nc c

(s)
3 + 8d(s)1 + 8Nc d

(s)
4 ,

d(s+1)
5 = 4 (C1 + C2)

h
4c(s)1 +Nc c

(s)
3 �Nc c

(s)
4

i
� 2Nc (N2

c + 8)

3
c(s)1 � 4N2

c c
(s)
3 + 4Nc d

(s)
5 ,

d(s+1)
6 = 8C1C2

h
2c(s)1 �Nc c

(s)
4 + 4d(s)1

i
.

(52)
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4

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.

The relations (11) imply that the color traces Crn can
be simplified by working out the commutators [V G,� ]
and [�c, [V G,� ]]. Under the trace, we find that both
commutators evaluate to the same structure apart from
a factor (4Nc). We obtain

Crn = �64⇡ (4Nc)
n�r fabc

X

j>2

⌦
H4 (�c)r V GT a

1 T b
2 T c

j

↵

⇥
Z

d⌦(nk)

4⇡

⇣
W

k
1j � W

k
2j

⌘
⇥veto(nk) . (15)

The sum over j contains the final-state partons of the
Born process and the collinear gluons emitted from the r
remaining insertions of �c, but not the initial-state par-
tons 1 and 2. The contributions where j refers to one
of the collinear gluons emitted from the first (n � r) in-
sertions of �c in (13) vanish. The gluon with label k
originates from the insertion of � and must be attached
to one initial-state and one final-state parton. The con-
straint ⇥veto(nk) = 1 � ⇥hard(nk) restricts the emission
to the veto region and arises from the incomplete cancel-
lation of real and virtual terms in �. Since the direction
nk in (15) is in the veto region, it cannot be collinear
to the directions n1, n2 or nj . As a consequence, the
collinear subtraction terms in (9) vanish, and one can

replace W
k
ij ! W k

ij in (15).
All information about the phase-space restrictions on

the direction of parton k are contained in the angular
integrals

Jj =

Z
d⌦(nk)

4⇡

�
W k

1j � W k
2j

�
⇥veto(nk) . (16)

The parton j can either move along the directions n1

and n2, when it is attached to one of the collinear gluons
emitted by the insertions of Rc

i , or it is one of the final-
state partons. Since W k

ii vanishes we have J1 = �J2.
There are thus (l + 1) independent kinematic structures
for a 2 ! l jet process. For the gap between jets case, we
find that Jj = +�Y if the rapidities of particles j and 1
have opposite signs, and Jj = ��Y otherwise.

A more complicated structure arises when one com-
mutes the remaining insertion of V G in (15) all the way
to the right. This leads to an expression involving anti-
commutators of color generators, which in general cannot
be simplified using the Lie algebra of SU(Nc). Here we

consider the important special case where particles 1 and
2 transform in the fundamental representation. We can
then use the relation

{T a
i , T b

i } =
1

Nc
�ab 1 + �i dabc T c

i ; i = 1, 2 , (17)

where the color-space formalism implies that �i = 1 for
an initial-state anti-quark and �i = �1 for an initial-
state quark. In this case a closed expression for the color
traces Crn can be obtained, which involves only three
non-trivial color structures:

Crn = 28�r⇡2 (4Nc)
n

⇢ X

j>2

Jj

⌦
H4

⇥
(T2 � T1) · Tj

+ 2r�1Nc (�1 � �2) dabc T a
1 T b

2 T c
j

⇤↵
(18)

+ 2 (1 � �r0) J2

⌦
H4

⇥
CF + (2r � 1) T1 · T2

⇤↵�
.

The generalization of this result to the case of arbitrary
representations involves a significantly larger number of
color structures and will be discussed elsewhere [20].

As a first application of the general result (18) we con-
sider quark-quark scattering. In this case the tree-level
hard function has two possible color structures, octet or
singlet, corresponding to gluon or photon exchange be-
tween the quarks. For the two cases, we get

C(O)
rn = �̂B 28�r⇡2 (4Nc)

n

CFJ43

+
J2

Nc

�
N2

c � 2r+1 + 1
�
(1 � �r0)

�
, (19)

C(S)
rn = �̂B 28�r⇡2 (4Nc)

n CF

⇥
� J43 + 2J2 (1 � �r0)

⇤
,

with J43 = J4 � J3, and �̂B = hH4i is the Born-level
partonic cross section. Assuming forward scattering as in
[2], the angular integrals evaluate to J2 = J43/2 = �Y .
Using these expressions in (14) and setting n = 1, we
recover the results of [2]. Repeating the calculation for
n = 2 we confirm the findings of [7]. As a further check of
(18), we have written a computer code based on Color-
Math [15] to directly evaluate the color structures Crn

for fixed values of r and n. Using this code, we have
checked the general formula for qq ! qq, qq̄ ! qq̄ and
qq̄ ! gg scattering up to eight-loop order.

The dependence of Crn in (18) on n and r is powerlike,
and it is possible to perform the sum over the infinite
tower of SLLs in closed form:

��̂ =
1X

n=0

�̂SLL
n = �̂B

⇣↵s

4⇡

⌘3
L3f(w) , (20)

where w = Nc↵s
⇡ L2 encodes the double-logarithmic de-

pendence. The function f(w) can be expressed in terms
of hypergeometric and related functions [20]. For the
singlet case, we get for forward scattering

��̂(S) = ��̂B
4CF

3⇡
↵3
s L3�Y 2F2

�
1, 1; 2, 5

2 ; �w
�
. (21)
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General result (valid for arbitrary representations) 

▸ recurrence relations:
T. Becher, M. Neubert, D. Y. Shao: in preparation 

linearly independent color structures must be generalized to

S1 = fabefcde {T b
1 ,T

c
1 } {T a

2 ,T
d
2 } ,

S2 = dadedbce {T b
1 ,T

c
1 } {T a

2 ,T
d
2 } ,

S3 = dadedbce
h
T

a
2

�
T

b
1 T

c
1 T

d
1

�
+
+ (1 $ 2)

i
,

S4 = {T a
1 ,T

b
1 } {T a

2 ,T
b
2 } ,

S5 = T1 · T2 ,

S6 = 1 .

(49)

In other words, the linear combinations of the di↵erent structures in each line of (45) are
broken up in their substructures. With this generalization, we obtain the mappings

S1 ! 8Nc S1 + 2Nc S2 + 8S4 + 32C1C2 S6 ,

S2 ! 4Nc S2 ,

S3 ! 4Nc S3 ,

S4 ! 8S1 + 8Nc S4 ,

S5 ! 4Nc S5 ,

S6 ! 0 .

(50)

Therefore, the basis {Si} closes under repeated application of �c.
At this point, we obtain the final result

Crn = �256⇡2 (4Nc)
n�r

"
M+2X

j=3

Jj

4X

i=1

c(r)i

⌦
H2!M O

(j)
i

↵
� J12

6X

i=1

d(r)i

⌦
H2!M Si

↵
#
, (51)

where the basis operators have been defined in (40) and (49). It follows from (21) that the

coe�cients d(r)i vanish for r = 0. We find that these coe�cients obey the recurrence relations

d(s+1)
1 = 2Nc c

(s)
1 + 4c(s)3 + 8Nc d

(s)
1 + 8d(s)4 ,

d(s+1)
2 = Nc c

(s)
1 + 2Nc d

(s)
1 + 4Nc d

(s)
2 ,

d(s+1)
3 = 2Nc c

(s)
1 + 4Nc d

(s)
3 ,

d(s+1)
4 = 4c(s)1 + 2Nc c

(s)
3 + 8d(s)1 + 8Nc d

(s)
4 ,

d(s+1)
5 = 4 (C1 + C2)

h
4c(s)1 +Nc c

(s)
3 �Nc c

(s)
4

i
� 2Nc (N2

c + 8)

3
c(s)1 � 4N2

c c
(s)
3 + 4Nc d

(s)
5 ,

d(s+1)
6 = 8C1C2

h
2c(s)1 �Nc c

(s)
4 + 4d(s)1

i
.

(52)
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4

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.

The relations (11) imply that the color traces Crn can
be simplified by working out the commutators [V G,� ]
and [�c, [V G,� ]]. Under the trace, we find that both
commutators evaluate to the same structure apart from
a factor (4Nc). We obtain

Crn = �64⇡ (4Nc)
n�r fabc

X

j>2

⌦
H4 (�c)r V GT a

1 T b
2 T c

j

↵

⇥
Z

d⌦(nk)

4⇡

⇣
W

k
1j � W

k
2j

⌘
⇥veto(nk) . (15)

The sum over j contains the final-state partons of the
Born process and the collinear gluons emitted from the r
remaining insertions of �c, but not the initial-state par-
tons 1 and 2. The contributions where j refers to one
of the collinear gluons emitted from the first (n � r) in-
sertions of �c in (13) vanish. The gluon with label k
originates from the insertion of � and must be attached
to one initial-state and one final-state parton. The con-
straint ⇥veto(nk) = 1 � ⇥hard(nk) restricts the emission
to the veto region and arises from the incomplete cancel-
lation of real and virtual terms in �. Since the direction
nk in (15) is in the veto region, it cannot be collinear
to the directions n1, n2 or nj . As a consequence, the
collinear subtraction terms in (9) vanish, and one can

replace W
k
ij ! W k

ij in (15).
All information about the phase-space restrictions on

the direction of parton k are contained in the angular
integrals

Jj =

Z
d⌦(nk)

4⇡

�
W k

1j � W k
2j

�
⇥veto(nk) . (16)

The parton j can either move along the directions n1

and n2, when it is attached to one of the collinear gluons
emitted by the insertions of Rc

i , or it is one of the final-
state partons. Since W k

ii vanishes we have J1 = �J2.
There are thus (l + 1) independent kinematic structures
for a 2 ! l jet process. For the gap between jets case, we
find that Jj = +�Y if the rapidities of particles j and 1
have opposite signs, and Jj = ��Y otherwise.

A more complicated structure arises when one com-
mutes the remaining insertion of V G in (15) all the way
to the right. This leads to an expression involving anti-
commutators of color generators, which in general cannot
be simplified using the Lie algebra of SU(Nc). Here we

consider the important special case where particles 1 and
2 transform in the fundamental representation. We can
then use the relation

{T a
i , T b

i } =
1

Nc
�ab 1 + �i dabc T c

i ; i = 1, 2 , (17)

where the color-space formalism implies that �i = 1 for
an initial-state anti-quark and �i = �1 for an initial-
state quark. In this case a closed expression for the color
traces Crn can be obtained, which involves only three
non-trivial color structures:

Crn = 28�r⇡2 (4Nc)
n

⇢ X

j>2

Jj

⌦
H4

⇥
(T2 � T1) · Tj

+ 2r�1Nc (�1 � �2) dabc T a
1 T b

2 T c
j

⇤↵
(18)

+ 2 (1 � �r0) J2

⌦
H4

⇥
CF + (2r � 1) T1 · T2

⇤↵�
.

The generalization of this result to the case of arbitrary
representations involves a significantly larger number of
color structures and will be discussed elsewhere [20].

As a first application of the general result (18) we con-
sider quark-quark scattering. In this case the tree-level
hard function has two possible color structures, octet or
singlet, corresponding to gluon or photon exchange be-
tween the quarks. For the two cases, we get

C(O)
rn = �̂B 28�r⇡2 (4Nc)

n

CFJ43

+
J2

Nc

�
N2

c � 2r+1 + 1
�
(1 � �r0)

�
, (19)

C(S)
rn = �̂B 28�r⇡2 (4Nc)

n CF

⇥
� J43 + 2J2 (1 � �r0)

⇤
,

with J43 = J4 � J3, and �̂B = hH4i is the Born-level
partonic cross section. Assuming forward scattering as in
[2], the angular integrals evaluate to J2 = J43/2 = �Y .
Using these expressions in (14) and setting n = 1, we
recover the results of [2]. Repeating the calculation for
n = 2 we confirm the findings of [7]. As a further check of
(18), we have written a computer code based on Color-
Math [15] to directly evaluate the color structures Crn

for fixed values of r and n. Using this code, we have
checked the general formula for qq ! qq, qq̄ ! qq̄ and
qq̄ ! gg scattering up to eight-loop order.

The dependence of Crn in (18) on n and r is powerlike,
and it is possible to perform the sum over the infinite
tower of SLLs in closed form:

��̂ =
1X

n=0

�̂SLL
n = �̂B

⇣↵s

4⇡

⌘3
L3f(w) , (20)

where w = Nc↵s
⇡ L2 encodes the double-logarithmic de-

pendence. The function f(w) can be expressed in terms
of hypergeometric and related functions [20]. For the
singlet case, we get for forward scattering

��̂(S) = ��̂B
4CF

3⇡
↵3
s L3�Y 2F2

�
1, 1; 2, 5

2 ; �w
�
. (21)

where the basis operators are defined as

O
(j)
1 = fabefcde T

a
2 {T b

1 ,T
c
1 }T d

j � (1 $ 2) ,

O
(j)
2 = dadedbce T

a
2 {T b

1 ,T
c
1 }T d

j � (1 $ 2) ,

O
(j)
3 = T

a
2 {T a

1 ,T
b
1 }T b

j � (1 $ 2) ,

O
(j)
4 = 2C1 T2 · Tj � 2C2 T1 · Tj .

(40)

From our result (21), it follows that for the special case where r = 0 we have

c(0)i = �i1 . (41)

Applying some number s insertions of �c we generate the right-hand side of (39) with co-

e�cients c(s)i . (We also generate terms proportional to J12, which will be discussed below.)
Applying �c one more time, the four structures change to

O
(j)
1 ! 6Nc O

(j)
1 +Nc O

(j)
2 + 4O(j)

3 + 4O(j)
4 ,

O
(j)
2 ! 4Nc O

(j)
2 ,

O
(j)
3 ! 4O(j)

1 + 6Nc O
(j)
3 ,

O
(j)
4 ! 2Nc O

(j)
4 .

(42)

The first relation follows from (30), and the remaining relations are readily derived by repeating
the derivation of (23) from (21) after replacing the overall color tensor fabefcde with dadedbce,
�ab �cd, and �ad �bc, respectively, making use of the trace relations in (26) and (35). The above
replacement rules lead to the recurrence relations

c(s+1)
1 = 6Nc c

(s)
1 + 4c(s)3 ,

c(s+1)
2 = Nc c

(s)
1 + 4Nc c

(s)
2 ,

c(s+1)
3 = 4c(s)1 + 6Nc c

(s)
3 ,

c(s+1)
4 = 4c(s)1 + 2Nc c

(s)
4 .

(43)

Solving this set of equations with the initial conditions in (41), we find

c(r)1 = 2r�1
⇥
(3Nc + 2)r + (3Nc � 2)r

⇤
,

c(r)2 = 2r�2Nc

"
(3Nc + 2)r

Nc + 2
+

(3Nc � 2)r

Nc � 2
� (2Nc)

r+1

N2
c � 4

#
,

c(r)3 = 2r�1
⇥
(3Nc + 2)r � (3Nc � 2)r

⇤
,

c(r)4 = 2r�1


(3Nc + 2)r

Nc + 1
+

(3Nc � 2)r

Nc � 1
� 2N r+1

c

N2
c � 1

�
.

(44)
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linearly independent color structures must be generalized to

S1 = fabefcde {T b
1 ,T

c
1 } {T a

2 ,T
d
2 } ,

S2 = dadedbce {T b
1 ,T

c
1 } {T a

2 ,T
d
2 } ,

S3 = dadedbce
h
T

a
2

�
T

b
1 T

c
1 T

d
1

�
+
+ (1 $ 2)

i
,

S4 = {T a
1 ,T

b
1 } {T a

2 ,T
b
2 } ,

S5 = T1 · T2 ,

S6 = 1 .

(49)

In other words, the linear combinations of the di↵erent structures in each line of (45) are
broken up in their substructures. With this generalization, we obtain the mappings

S1 ! 8Nc S1 + 2Nc S2 + 8S4 + 32C1C2 S6 ,

S2 ! 4Nc S2 ,

S3 ! 4Nc S3 ,

S4 ! 8S1 + 8Nc S4 ,

S5 ! 4Nc S5 ,

S6 ! 0 .

(50)

Therefore, the basis {Si} closes under repeated application of �c.
At this point, we obtain the final result

Crn = �256⇡2 (4Nc)
n�r

"
M+2X

j=3

Jj

4X

i=1

c(r)i

⌦
H2!M O

(j)
i

↵
� J12

6X

i=1

d(r)i

⌦
H2!M Si

↵
#
, (51)

where the basis operators have been defined in (40) and (49). It follows from (21) that the

coe�cients d(r)i vanish for r = 0. We find that these coe�cients obey the recurrence relations

d(s+1)
1 = 2Nc c

(s)
1 + 4c(s)3 + 8Nc d

(s)
1 + 8d(s)4 ,

d(s+1)
2 = Nc c

(s)
1 + 2Nc d

(s)
1 + 4Nc d

(s)
2 ,

d(s+1)
3 = 2Nc c

(s)
1 + 4Nc d

(s)
3 ,

d(s+1)
4 = 4c(s)1 + 2Nc c

(s)
3 + 8d(s)1 + 8Nc d

(s)
4 ,

d(s+1)
5 = 4 (C1 + C2)

h
4c(s)1 +Nc c

(s)
3 �Nc c

(s)
4

i
� 2Nc (N2

c + 8)

3
c(s)1 � 4N2

c c
(s)
3 + 4Nc d

(s)
5 ,

d(s+1)
6 = 8C1C2

h
2c(s)1 �Nc c

(s)
4 + 4d(s)1

i
.

(52)
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linearly independent color structures must be generalized to

S1 = fabefcde {T b
1 ,T

c
1 } {T a

2 ,T
d
2 } ,

S2 = dadedbce {T b
1 ,T

c
1 } {T a

2 ,T
d
2 } ,

S3 = dadedbce
h
T

a
2

�
T

b
1 T

c
1 T

d
1

�
+
+ (1 $ 2)

i
,

S4 = {T a
1 ,T

b
1 } {T a

2 ,T
b
2 } ,

S5 = T1 · T2 ,

S6 = 1 .

(49)

In other words, the linear combinations of the di↵erent structures in each line of (45) are
broken up in their substructures. With this generalization, we obtain the mappings

S1 ! 8Nc S1 + 2Nc S2 + 8S4 + 32C1C2 S6 ,

S2 ! 4Nc S2 ,

S3 ! 4Nc S3 ,

S4 ! 8S1 + 8Nc S4 ,

S5 ! 4Nc S5 ,

S6 ! 0 .

(50)

Therefore, the basis {Si} closes under repeated application of �c.
At this point, we obtain the final result

Crn = �256⇡2 (4Nc)
n�r

"
M+2X

j=3

Jj

4X

i=1

c(r)i

⌦
H2!M O

(j)
i

↵
� J12

6X

i=1

d(r)i

⌦
H2!M Si

↵
#
, (51)

where the basis operators have been defined in (40) and (49). It follows from (21) that the

coe�cients d(r)i vanish for r = 0. We find that these coe�cients obey the recurrence relations

d(s+1)
1 = 2Nc c

(s)
1 + 4c(s)3 + 8Nc d

(s)
1 + 8d(s)4 ,

d(s+1)
2 = Nc c

(s)
1 + 2Nc d

(s)
1 + 4Nc d

(s)
2 ,

d(s+1)
3 = 2Nc c

(s)
1 + 4Nc d

(s)
3 ,

d(s+1)
4 = 4c(s)1 + 2Nc c

(s)
3 + 8d(s)1 + 8Nc d

(s)
4 ,

d(s+1)
5 = 4 (C1 + C2)

h
4c(s)1 +Nc c

(s)
3 �Nc c

(s)
4

i
� 2Nc (N2

c + 8)

3
c(s)1 � 4N2

c c
(s)
3 + 4Nc d

(s)
5 ,

d(s+1)
6 = 8C1C2

h
2c(s)1 �Nc c

(s)
4 + 4d(s)1

i
.
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From our result (21), it follows that for the special case where r = 0 we have

c(0)i = �i1 . (41)

Applying some number s insertions of �c we generate the right-hand side of (39) with co-

e�cients c(s)i . (We also generate terms proportional to J12, which will be discussed below.)
Applying �c one more time, the four structures change to

O
(j)
1 ! 6Nc O

(j)
1 +Nc O

(j)
2 + 4O(j)

3 + 4O(j)
4 ,

O
(j)
2 ! 4Nc O

(j)
2 ,

O
(j)
3 ! 4O(j)

1 + 6Nc O
(j)
3 ,

O
(j)
4 ! 2Nc O

(j)
4 .

(42)

The first relation follows from (30), and the remaining relations are readily derived by repeating
the derivation of (23) from (21) after replacing the overall color tensor fabefcde with dadedbce,
�ab �cd, and �ad �bc, respectively, making use of the trace relations in (26) and (35). The above
replacement rules lead to the recurrence relations

c(s+1)
1 = 6Nc c

(s)
1 + 4c(s)3 ,

c(s+1)
2 = Nc c

(s)
1 + 4Nc c

(s)
2 ,

c(s+1)
3 = 4c(s)1 + 6Nc c

(s)
3 ,

c(s+1)
4 = 4c(s)1 + 2Nc c

(s)
4 .

(43)

Solving this set of equations with the initial conditions in (41), we find

c(r)1 = 2r�1
⇥
(3Nc + 2)r + (3Nc � 2)r

⇤
,

c(r)2 = 2r�2Nc

"
(3Nc + 2)r

Nc + 2
+

(3Nc � 2)r

Nc � 2
� (2Nc)

r+1

N2
c � 4

#
,

c(r)3 = 2r�1
⇥
(3Nc + 2)r � (3Nc � 2)r

⇤
,

c(r)4 = 2r�1


(3Nc + 2)r

Nc + 1
+

(3Nc � 2)r

Nc � 1
� 2N r+1

c

N2
c � 1

�
.

(44)

8

Taking into account the expressions for the coe�cients c(s)i obtained in (44), we find that the
solutions to these relations are

d(r)1 = 23r�1
⇥
(Nc + 1)r + (Nc � 1)r

⇤
� 2r�1

⇥
(3Nc + 2)r + (3Nc � 2)r

⇤
,

d(r)2 = 23r�2Nc


(Nc + 1)r

Nc + 2
+

(Nc � 1)r

Nc � 2

�
� 2r�2Nc


(3Nc + 2)r

Nc + 2
+

(3Nc � 2)r

Nc � 2

�
,

d(r)3 = 2r�1Nc

"
(3Nc + 2)r

Nc + 2
+

(3Nc � 2)r

Nc � 2
� (2Nc)

r+1

N2
c � 4

#
,

d(r)4 = 23r�1
⇥
(Nc + 1)r � (Nc � 1)r

⇤
� 2r�1

⇥
(3Nc + 2)r � (3Nc � 2)r

⇤
,

d(r)5 = 2r (C1 + C2)


Nc + 2

Nc + 1
(3Nc + 2)r � Nc � 2

Nc � 1
(3Nc � 2)r � 2N r+1

c

N2
c � 1

�

� 2r�1Nc

3

⇥
(Nc + 4) (3Nc + 2)r + (Nc � 4) (3Nc � 2)r � (2Nc)

r+1 ⇤ ,

d(r)6 = 23r+1C1C2

⇥
(Nc + 1)r�1 + (Nc � 1)r�1 ⇤ (1� �r0)

� 2r+1C1C2


(3Nc + 2)r

Nc + 1
+

(3Nc � 2)r

Nc � 1
� 2N r+1

c

N2
c � 1

�
.

(53)

Relations (51), (44) and (53) represent our final solution for the color structures Crn.

2.4 Initial-state partons in the fundamental representation

The general result (51) simplifies drastically if particles 1 and 2 both transform in the (anti-
)fundamental representation of SU(Nc), because we can then use the relation (for i = 1, 2)

{T a
i ,T

b
i } =

1

Nc
�ab + �i dabc T

c
i , (54)

where �i = 1 for an initial-state anti-quark and �i = �1 for an initial-state quark. [Shouldn’t
this be the other way around?] In this case, the basis operators involving symmetric products
of two or three color generators can be simplified. We obtain

O
(j)
1 = (T1 � T2) · Tj �

Nc

2
(�1 � �2) dabc T

a
1 T

b
2 T

c
j ,

O
(j)
2 =

N2
c � 4

Nc
(�1 � �2) dabc T

a
1 T

b
2 T

c
j ,

O
(j)
3 = � 1

Nc
(T1 � T2) · Tj + (�1 � �2) dabc T

a
1 T

b
2 T

c
j ,

O
(j)
4 = �N2

c � 1

Nc
(T1 � T2) · Tj ,

(55)
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4

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.

The relations (11) imply that the color traces Crn can
be simplified by working out the commutators [V G,� ]
and [�c, [V G,� ]]. Under the trace, we find that both
commutators evaluate to the same structure apart from
a factor (4Nc). We obtain

Crn = �64⇡ (4Nc)
n�r fabc

X

j>2

⌦
H4 (�c)r V GT a

1 T b
2 T c

j

↵

⇥
Z

d⌦(nk)

4⇡

⇣
W

k
1j � W

k
2j

⌘
⇥veto(nk) . (15)

The sum over j contains the final-state partons of the
Born process and the collinear gluons emitted from the r
remaining insertions of �c, but not the initial-state par-
tons 1 and 2. The contributions where j refers to one
of the collinear gluons emitted from the first (n � r) in-
sertions of �c in (13) vanish. The gluon with label k
originates from the insertion of � and must be attached
to one initial-state and one final-state parton. The con-
straint ⇥veto(nk) = 1 � ⇥hard(nk) restricts the emission
to the veto region and arises from the incomplete cancel-
lation of real and virtual terms in �. Since the direction
nk in (15) is in the veto region, it cannot be collinear
to the directions n1, n2 or nj . As a consequence, the
collinear subtraction terms in (9) vanish, and one can

replace W
k
ij ! W k

ij in (15).
All information about the phase-space restrictions on

the direction of parton k are contained in the angular
integrals

Jj =

Z
d⌦(nk)

4⇡

�
W k

1j � W k
2j

�
⇥veto(nk) . (16)

The parton j can either move along the directions n1

and n2, when it is attached to one of the collinear gluons
emitted by the insertions of Rc

i , or it is one of the final-
state partons. Since W k

ii vanishes we have J1 = �J2.
There are thus (l + 1) independent kinematic structures
for a 2 ! l jet process. For the gap between jets case, we
find that Jj = +�Y if the rapidities of particles j and 1
have opposite signs, and Jj = ��Y otherwise.

A more complicated structure arises when one com-
mutes the remaining insertion of V G in (15) all the way
to the right. This leads to an expression involving anti-
commutators of color generators, which in general cannot
be simplified using the Lie algebra of SU(Nc). Here we

consider the important special case where particles 1 and
2 transform in the fundamental representation. We can
then use the relation

{T a
i , T b

i } =
1

Nc
�ab 1 + �i dabc T c

i ; i = 1, 2 , (17)

where the color-space formalism implies that �i = 1 for
an initial-state anti-quark and �i = �1 for an initial-
state quark. In this case a closed expression for the color
traces Crn can be obtained, which involves only three
non-trivial color structures:

Crn = 28�r⇡2 (4Nc)
n

⇢ X

j>2

Jj

⌦
H4

⇥
(T2 � T1) · Tj

+ 2r�1Nc (�1 � �2) dabc T a
1 T b

2 T c
j

⇤↵
(18)

+ 2 (1 � �r0) J2

⌦
H4

⇥
CF + (2r � 1) T1 · T2

⇤↵�
.

The generalization of this result to the case of arbitrary
representations involves a significantly larger number of
color structures and will be discussed elsewhere [20].

As a first application of the general result (18) we con-
sider quark-quark scattering. In this case the tree-level
hard function has two possible color structures, octet or
singlet, corresponding to gluon or photon exchange be-
tween the quarks. For the two cases, we get

C(O)
rn = �̂B 28�r⇡2 (4Nc)

n

CFJ43

+
J2

Nc

�
N2

c � 2r+1 + 1
�
(1 � �r0)

�
, (19)

C(S)
rn = �̂B 28�r⇡2 (4Nc)

n CF

⇥
� J43 + 2J2 (1 � �r0)

⇤
,

with J43 = J4 � J3, and �̂B = hH4i is the Born-level
partonic cross section. Assuming forward scattering as in
[2], the angular integrals evaluate to J2 = J43/2 = �Y .
Using these expressions in (14) and setting n = 1, we
recover the results of [2]. Repeating the calculation for
n = 2 we confirm the findings of [7]. As a further check of
(18), we have written a computer code based on Color-
Math [15] to directly evaluate the color structures Crn

for fixed values of r and n. Using this code, we have
checked the general formula for qq ! qq, qq̄ ! qq̄ and
qq̄ ! gg scattering up to eight-loop order.

The dependence of Crn in (18) on n and r is powerlike,
and it is possible to perform the sum over the infinite
tower of SLLs in closed form:

��̂ =
1X

n=0

�̂SLL
n = �̂B

⇣↵s

4⇡

⌘3
L3f(w) , (20)

where w = Nc↵s
⇡ L2 encodes the double-logarithmic de-

pendence. The function f(w) can be expressed in terms
of hypergeometric and related functions [20]. For the
singlet case, we get for forward scattering

��̂(S) = ��̂B
4CF

3⇡
↵3
s L3�Y 2F2

�
1, 1; 2, 5

2 ; �w
�
. (21)
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General result (valid for arbitrary representations) 

▸ series of SLLs, starting at 3-loop order: 

▸ reproduces all that is known about SLLs (and much more…)

T. Becher, M. Neubert, D. Y. Shao: in preparation 

linearly independent color structures must be generalized to

S1 = fabefcde {T b
1 ,T

c
1 } {T a

2 ,T
d
2 } ,

S2 = dadedbce {T b
1 ,T

c
1 } {T a

2 ,T
d
2 } ,

S3 = dadedbce
h
T

a
2

�
T

b
1 T

c
1 T

d
1

�
+
+ (1 $ 2)

i
,

S4 = {T a
1 ,T

b
1 } {T a

2 ,T
b
2 } ,

S5 = T1 · T2 ,

S6 = 1 .

(49)

In other words, the linear combinations of the di↵erent structures in each line of (45) are
broken up in their substructures. With this generalization, we obtain the mappings

S1 ! 8Nc S1 + 2Nc S2 + 8S4 + 32C1C2 S6 ,

S2 ! 4Nc S2 ,

S3 ! 4Nc S3 ,

S4 ! 8S1 + 8Nc S4 ,

S5 ! 4Nc S5 ,

S6 ! 0 .

(50)

Therefore, the basis {Si} closes under repeated application of �c.
At this point, we obtain the final result

Crn = �256⇡2 (4Nc)
n�r

"
M+2X

j=3

Jj

4X

i=1

c(r)i

⌦
H2!M O

(j)
i

↵
� J12

6X

i=1

d(r)i

⌦
H2!M Si

↵
#
, (51)

where the basis operators have been defined in (40) and (49). It follows from (21) that the

coe�cients d(r)i vanish for r = 0. We find that these coe�cients obey the recurrence relations

d(s+1)
1 = 2Nc c

(s)
1 + 4c(s)3 + 8Nc d

(s)
1 + 8d(s)4 ,

d(s+1)
2 = Nc c

(s)
1 + 2Nc d

(s)
1 + 4Nc d

(s)
2 ,

d(s+1)
3 = 2Nc c

(s)
1 + 4Nc d

(s)
3 ,

d(s+1)
4 = 4c(s)1 + 2Nc c

(s)
3 + 8d(s)1 + 8Nc d

(s)
4 ,

d(s+1)
5 = 4 (C1 + C2)

h
4c(s)1 +Nc c

(s)
3 �Nc c

(s)
4

i
� 2Nc (N2

c + 8)

3
c(s)1 � 4N2

c c
(s)
3 + 4Nc d

(s)
5 ,

d(s+1)
6 = 8C1C2

h
2c(s)1 �Nc c

(s)
4 + 4d(s)1

i
.

(52)
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define � = Vm + Rm. The collinear singularities in the soft anomalous dimension are encoded in the
quantity

�c =
X

i=1,2

4
⇥
Ci 1� Ti,L � Ti,R �(nm+1 � ni)

⇤
, (12)

which enters the anomalous dimension multiplied by ln(µ2
/ŝ), where

p
ŝ = Q is the partonic center-

of-mass energy. When inserted into (8) this gives rise to double logarithms, which are the source of the
SLLs. All final-state collinear singularities cancel between real and virtual contributions, and for this
reason only the initial-state pieces (with i = 1, 2) must be kept. The cancellation for the initial-state
terms is spoiled by the complex Coulomb phases in (3), which are contained in [17]

V G = �8i⇡ (T1,L · T2,L � T1,R · T2,R) . (13)

Color conservation implies that these phases are only relevant for processes involving (at least) two
colored partons in the initial state. The color generators Ti,L act on the amplitude and hence multiply
the hard functions Hm from the left, while the generators Tj,R act on the conjugate amplitude and
stand on the right of Hm. The color matrices in the virtual part act on the color indices of the m

partons, Ti · Tj =
P

a
T a

i
T a

j
, and Ti · Ti = Ci 1 is the quadratic Casimir operator of parton i. The

color matrices in the real-emission terms Rm and in the second term in (12) are di↵erent. They take
an amplitude with m partons and map it to an amplitude with (m + 1) partons. Explicitly, we have
Hm Ti,L � Tj,R = T a

i
Hm T ã

j
, where the color indices a and ã refer to the emitted gluon. We use the

symbol � to indicate the presence of the additional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act on these indices.

Collinear safely, the fact that the singularities associated with real and virtual collinear emissions
cancel against each other, ensures that under the color trace in (8) the operator �c vanishes whenever
it stands left to the 1. Combined with the fact that the commutator [�c

,�] vanishes under the trace
in (8), this implies that Sudakov double logarithms arise only in the presence of the Coulomb phases
V G. It follows that for a given 2 ! 2 scattering process the SLL at (3 + n)th order in perturbation
theory is associated with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G �⌦ 1

↵
, (14)

where 0  r  n. Each insertion of �c gives rise to a double logarithm. This explains why the SLLs
first appear at four-loop order. However, the three-loop term (n = 0) originates from the same color
structures and is numerically significant, even though it only involves the imaginary part ⇡ = | ln(�1)|
of the large logarithm. Neglecting the running of the coupling ↵s, setting µh = Q =

p
ŝ and µs = Q0,

and evaluating the integrals over µ arising in the Taylor expansion of the matrix exponential in (8),
we find for the contribution of SLLs to the cross section

�SLL = �Born

1X

n=0

⇣
↵s

4⇡

⌘
n+3

L
2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn , (15)

where L = ln(Q/Q0). Starting from four-loop order two large logarithms per loop arise.
For the simplest case of quark-initiated 2 ! 2 scattering, we have succeeded to evaluate the color

traces Crn in closed form in terms of only three non-trivial color structures [50]. The result reads

Crn = 28�r
⇡
2 (4Nc)

n

⇢ X

j=3,4

Jj

⌦
H4

⇥
(T2 � T1) · Tj + 2r�1

Nc (�1 � �2) dabc T
a

1 T b

2 T
c

j

⇤↵

+ 2 (1 � �r0) J2
⌦
H4

⇥
CF + (2r � 1)T1 · T2

⇤↵�
,

(16)

where �i = 1 for an initial-state antiquark and �i = �1 for an initial-state quark. The sum in the
first term runs over the final-state partons. The structure H4 is normalized such that hH4i = 1. All
information about the phase-space restrictions is contained in the angular integrals

Jj =

Z
d⌦(nk)

4⇡

⇣
W

k

1j � W
k

2j

⌘
⇥veto(nk) ; with W

k

ij =
ni · nj

ni · nk nj · nk

, (17)

8

4

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.

The relations (11) imply that the color traces Crn can
be simplified by working out the commutators [V G,� ]
and [�c, [V G,� ]]. Under the trace, we find that both
commutators evaluate to the same structure apart from
a factor (4Nc). We obtain

Crn = �64⇡ (4Nc)
n�r fabc

X

j>2

⌦
H4 (�c)r V GT a

1 T b
2 T c

j

↵

⇥
Z

d⌦(nk)

4⇡

⇣
W

k
1j � W

k
2j

⌘
⇥veto(nk) . (15)

The sum over j contains the final-state partons of the
Born process and the collinear gluons emitted from the r
remaining insertions of �c, but not the initial-state par-
tons 1 and 2. The contributions where j refers to one
of the collinear gluons emitted from the first (n � r) in-
sertions of �c in (13) vanish. The gluon with label k
originates from the insertion of � and must be attached
to one initial-state and one final-state parton. The con-
straint ⇥veto(nk) = 1 � ⇥hard(nk) restricts the emission
to the veto region and arises from the incomplete cancel-
lation of real and virtual terms in �. Since the direction
nk in (15) is in the veto region, it cannot be collinear
to the directions n1, n2 or nj . As a consequence, the
collinear subtraction terms in (9) vanish, and one can

replace W
k
ij ! W k

ij in (15).
All information about the phase-space restrictions on

the direction of parton k are contained in the angular
integrals

Jj =

Z
d⌦(nk)

4⇡

�
W k

1j � W k
2j

�
⇥veto(nk) . (16)

The parton j can either move along the directions n1

and n2, when it is attached to one of the collinear gluons
emitted by the insertions of Rc

i , or it is one of the final-
state partons. Since W k

ii vanishes we have J1 = �J2.
There are thus (l + 1) independent kinematic structures
for a 2 ! l jet process. For the gap between jets case, we
find that Jj = +�Y if the rapidities of particles j and 1
have opposite signs, and Jj = ��Y otherwise.

A more complicated structure arises when one com-
mutes the remaining insertion of V G in (15) all the way
to the right. This leads to an expression involving anti-
commutators of color generators, which in general cannot
be simplified using the Lie algebra of SU(Nc). Here we

consider the important special case where particles 1 and
2 transform in the fundamental representation. We can
then use the relation

{T a
i , T b

i } =
1

Nc
�ab 1 + �i dabc T c

i ; i = 1, 2 , (17)

where the color-space formalism implies that �i = 1 for
an initial-state anti-quark and �i = �1 for an initial-
state quark. In this case a closed expression for the color
traces Crn can be obtained, which involves only three
non-trivial color structures:

Crn = 28�r⇡2 (4Nc)
n

⇢ X

j>2

Jj

⌦
H4

⇥
(T2 � T1) · Tj

+ 2r�1Nc (�1 � �2) dabc T a
1 T b

2 T c
j

⇤↵
(18)

+ 2 (1 � �r0) J2

⌦
H4

⇥
CF + (2r � 1) T1 · T2

⇤↵�
.

The generalization of this result to the case of arbitrary
representations involves a significantly larger number of
color structures and will be discussed elsewhere [20].

As a first application of the general result (18) we con-
sider quark-quark scattering. In this case the tree-level
hard function has two possible color structures, octet or
singlet, corresponding to gluon or photon exchange be-
tween the quarks. For the two cases, we get

C(O)
rn = �̂B 28�r⇡2 (4Nc)

n

CFJ43

+
J2

Nc

�
N2

c � 2r+1 + 1
�
(1 � �r0)

�
, (19)

C(S)
rn = �̂B 28�r⇡2 (4Nc)

n CF

⇥
� J43 + 2J2 (1 � �r0)

⇤
,

with J43 = J4 � J3, and �̂B = hH4i is the Born-level
partonic cross section. Assuming forward scattering as in
[2], the angular integrals evaluate to J2 = J43/2 = �Y .
Using these expressions in (14) and setting n = 1, we
recover the results of [2]. Repeating the calculation for
n = 2 we confirm the findings of [7]. As a further check of
(18), we have written a computer code based on Color-
Math [15] to directly evaluate the color structures Crn

for fixed values of r and n. Using this code, we have
checked the general formula for qq ! qq, qq̄ ! qq̄ and
qq̄ ! gg scattering up to eight-loop order.

The dependence of Crn in (18) on n and r is powerlike,
and it is possible to perform the sum over the infinite
tower of SLLs in closed form:

��̂ =
1X

n=0

�̂SLL
n = �̂B

⇣↵s

4⇡

⌘3
L3f(w) , (20)

where w = Nc↵s
⇡ L2 encodes the double-logarithmic de-

pendence. The function f(w) can be expressed in terms
of hypergeometric and related functions [20]. For the
singlet case, we get for forward scattering

��̂(S) = ��̂B
4CF

3⇡
↵3
s L3�Y 2F2

�
1, 1; 2, 5

2 ; �w
�
. (21)



Matthias Neubert  — JGU Mainz

RESUMMATION OF SUPER-LEADING LOGARITHMS

RESUMMATION OF SUPER-LEADING LOGARITHMS

21

Simplifications for (anti-)quark-initiated processes 

▸ in the fundamental representation, symmetrized products of color 
generators can be reduced (  for (anti-)quarks): 

▸ simple results in terms of three non-trivial color structures:

σi = ± 1

Taking into account the expressions for the coe�cients c(s)i obtained in (44), we find that the
solutions to these relations are

d(r)1 = 23r�1
⇥
(Nc + 1)r + (Nc � 1)r

⇤
� 2r�1

⇥
(3Nc + 2)r + (3Nc � 2)r

⇤
,

d(r)2 = 23r�2Nc


(Nc + 1)r

Nc + 2
+

(Nc � 1)r

Nc � 2

�
� 2r�2Nc


(3Nc + 2)r

Nc + 2
+

(3Nc � 2)r

Nc � 2

�
,

d(r)3 = 2r�1Nc

"
(3Nc + 2)r

Nc + 2
+

(3Nc � 2)r

Nc � 2
� (2Nc)

r+1

N2
c � 4

#
,

d(r)4 = 23r�1
⇥
(Nc + 1)r � (Nc � 1)r

⇤
� 2r�1

⇥
(3Nc + 2)r � (3Nc � 2)r

⇤
,

d(r)5 = 2r (C1 + C2)


Nc + 2

Nc + 1
(3Nc + 2)r � Nc � 2

Nc � 1
(3Nc � 2)r � 2N r+1

c

N2
c � 1

�

� 2r�1Nc

3

⇥
(Nc + 4) (3Nc + 2)r + (Nc � 4) (3Nc � 2)r � (2Nc)

r+1 ⇤ ,

d(r)6 = 23r+1C1C2

⇥
(Nc + 1)r�1 + (Nc � 1)r�1 ⇤ (1� �r0)

� 2r+1C1C2


(3Nc + 2)r

Nc + 1
+

(3Nc � 2)r

Nc � 1
� 2N r+1

c

N2
c � 1

�
.

(53)

Relations (51), (44) and (53) represent our final solution for the color structures Crn.

2.4 Initial-state partons in the fundamental representation

The general result (51) simplifies drastically if particles 1 and 2 both transform in the (anti-
)fundamental representation of SU(Nc), because we can then use the relation (for i = 1, 2)

{T a
i ,T

b
i } =

1

Nc
�ab + �i dabc T

c
i , (54)

where �i = 1 for an initial-state anti-quark and �i = �1 for an initial-state quark. [Shouldn’t
this be the other way around?] In this case, the basis operators involving symmetric products
of two or three color generators can be simplified. We obtain

O
(j)
1 = (T1 � T2) · Tj �

Nc

2
(�1 � �2) dabc T

a
1 T

b
2 T

c
j ,

O
(j)
2 =

N2
c � 4

Nc
(�1 � �2) dabc T

a
1 T

b
2 T

c
j ,

O
(j)
3 = � 1

Nc
(T1 � T2) · Tj + (�1 � �2) dabc T

a
1 T

b
2 T

c
j ,

O
(j)
4 = �N2

c � 1

Nc
(T1 � T2) · Tj ,

(55)
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and [Using which identities?]

S1 = �N2
c � 1

Nc
1� N2

c � 4

2
�1�2 T1 · T2 ,

S2 =

✓
N2

c � 4

Nc

◆2

�1�2 T1 · T2 ,

S3 =
(N2

c � 4)(N2
c � 6)

3N2
c

T1 · T2 ,

S4 =
N2

c � 1

N2
c

1+
N2

c � 4

Nc
�1�2 T1 · T2 .

(56)

In deriving these results we have used the trace relation (35) as well as daab = 0. It follows
that we encounter only the following combinations of coe�cients:

c(r)1 � 1

Nc
c(r)3 � N2

c � 1

Nc
c(r)4 = (2Nc)

r ,

�Nc

2
c(r)1 +

N2
c � 4

Nc
c(r)2 + c(r)3 = �2r�1Nc (2Nc)

r ,

�N2
c � 1Nc d

(r)
1 +N2

c � 1N2
c d

(r)
4 + d(r)6 = 2CF (1� �r0) (2Nc)

r ,

(N2
c � 4)(N2

c � 6)

3N2
c

d(r)3 + d(r)5 = 2 (2r � 1) (2Nc)
r ,

�N2
c � 4

2
d(r)1 +

✓
N2

c � 4

Nc

◆2

d(r)2 +N2
c � 4Nc d

(r)
4 = 0 ,

(57)

where we have used that C1 = C2 = CF = (N2
c � 1)/(2Nc). The master formula then takes

the very simple form [1]

Crn = �28�r⇡2 (4Nc)
n

⇢M+2X

j=3

Jj
⌦
H2!M

⇥
(T1 � T2) · Tj � 2r�1Nc (�1 � �2) dabc T

a
1 T

b
2 T

c
j

⇤↵

� 2 (1� �r0) J12
⌦
H2!M

⇥
CF 1+ (2r � 1)T1 · T2

⇤↵�
.

(58)
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�(S)
SLL = ��Born

16↵sL

81⇡
�Y

✓
3↵s

⇡
⇡2

◆
w 2F2

�
1, 1; 2,

5

2
;�w

�
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⇡
L2
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ŝ = 500GeV, �Y = 2

<latexit sha1_base64="TlhbpaHWi8B0p9WUvscpBgRe77s=">AAACGHicbVDLSgNBEJz1bXxFPXoZDIIHibtR0YsgKuhRwSRKNoTeSccMzj6c6RXDks/w4q948aCIV2/+jZOYgxoLGoqqbrq7gkRJQ6776YyMjo1PTE5N52Zm5+YX8otLFROnWmBZxCrWlwEYVDLCMklSeJlohDBQWA1ujnp+9Q61kXF0QZ0E6yFcR7IlBZCVGvlN39xqyvw2EDfd/R3X9Td8wnvKTrDS3eD+bQrNnH+MioBf7Zca+YJbdPvgw8QbkAIb4KyR//CbsUhDjEgoMKbmuQnVM9AkhcJuzk8NJiBu4BprlkYQoqln/ce6fM0qTd6Kta2IeF/9OZFBaEwnDGxnCNQ2f72e+J9XS6m1V89klKSEkfhe1EoVp5j3UuJNqVGQ6lgCQkt7Kxdt0CDIZpmzIXh/Xx4mlVLR2yqWzrcLB4eDOKbYCltl68xju+yAnbIzVmaCPbAn9sJenUfn2Xlz3r9bR5zBzDL7BefjC5Guns8=</latexit>

p
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RESUMMATION OF SUPER-LEADING LOGARITHMS

T. Becher, M. Neubert, D. Y. Shao: Phys. Rev. Lett. 127 (2021) 212002 

▸ asymptotic behavior for : 

▸ very different from standard Sudakov double logarithms  

▸ expect even larger effects for gluon-initiated processes!

L → ∞

∼ e−w
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IMPORTANT REMARKS

▸ SCET-based approach solves 16-year old QCD problem, extending 
existing results to all orders of perturbation theory and to arbitrary 

 hard-scattering processes 

▸ master formula also applies to cases where  or even , 
which were not considered before (SLLs start at 4- and 5-loop order, 
respectively) 

▸ relevant for both SM phenomenology (e.g. ) and    
New-Physics searches (e.g. WIMP searches in )

2 → M

M = 1 M = 0

pp → h + jet
pp → jet + /ET
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CONCLUSIONS

25

Toward a complete theory of LHC jet processes 

▸ powerful new factorization theorem derived using SCET 

▸ in future, extension to massive final-state partons and calculations 
beyond leading logarithms 

▸ detailed study of low-energy matrix elements using SCET with 
Glauber gluons will offer an ab initio understanding of violations of  
conventional factorization (perturbative part of “underlying event”) 

▸ results very relevant for future improvements of parton showers 

▸ new levels of precision in predictions for important LHC processes


