RESUMMATION OF SUPER-LEADING LOGARITHMS (SOLVING A 16-YEAR OLD QCD PROBLEM)

MATTHIAS NEUBERT

PRISMA+ CLUSTER OF EXCELLENCE \& MAINZ INSTITUTE FOR THEORETICAL PHYSICS JOHANNES GUTENBERG UNIVERSITY MAINZ

SCET 2022 — BERN, 20 APRIL 2022
T. BECHER, MN, D.Y. SHAO, PHYS. REV. LETT. 127 (2021) 212002

PRiSMA ${ }^{+}$

LARGE LOGARITHMS IN JET PROCESSES

CERN Document Server, ATLAS-PHOTO-2018-022-6

LARGE LOGARITHMS IN JET PROCESSES

Perturbative expansion:

state-of-the-art: 2-loop order

LARGE LOGARITHMS IN JET PROCESSES

Non-global logarithms at lepton colliders

- high-energetic radiation restricted to certain regions (inside jets)
- soft radiation from secondary emissions inside jets leads to intricate pattern of large logarithms that do not exponentiate

- "non-global" logarithms not contained in conventional parton showers
- single-logarithmic effects $\sim\left(\alpha_{s} L\right)^{n}$ at lepton colliders
- resummation in large- N_{c} limit using BMS integral equation
J. Banfi, G. Marchesini, G. Smye: JHEP 08 (2002) 006

At hadron colliders, non-global logarithms take on a more intricate form, and no generalization of BMS equation exists!

LaRGE LOGARITHMS IN JET PROCESSES AT HADRON COLLIDERS

Perturbative expansion includes "super-leading" logarithms:

$$
\sigma \sim \sigma_{\text {Born }} \times\{1+\alpha_{s} L+\alpha_{s}^{2} L^{2}+\alpha_{s}^{3} L^{3}+\underbrace{\left.\alpha_{s}^{4} L^{5}+\alpha_{s}^{5} L^{7}+\ldots\right\}}_{\text {formally larger than O(1) }}
$$

LARGE LOGARITHMS IN JET PROCESSES AT HADRON COLLIDERS

Really, double logarithmic series starting at 3-loop order:

$$
\sigma \sim \sigma_{\text {Born }} \times\{1+\alpha_{s} L+\alpha_{s}^{2} L^{2}+\left(\alpha_{s} \pi^{2}\right)[\underbrace{\left.\alpha_{s}^{2} L^{3}+\alpha_{s}^{3} L^{5}+\ldots\right]}_{\text {formally larger than O(1) }}\}
$$

COULOMB PHASES BREAK COLOR COHERENCE

Super-leading logarithms

- breakdown of color coherence due to a subtle quantum effect: soft gluon exchange between initial-state partons

- soft anomalous dimension:

$$
\boldsymbol{\Gamma}(\{\underline{p}\}, \mu)=\sum_{(i j)} \frac{\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}}{2} \gamma_{\text {cusp }}\left(\alpha_{s}\right) \ln \frac{\mu^{2}}{-s_{i j}}+\sum_{i} \gamma^{i}\left(\alpha_{s}\right)+\underset{\text { т. Becher, M. Neubert (2009) }}{\mathcal{O}}\left(\alpha_{s}^{3}\right)
$$

where $s_{i j}>0$ if particles i and j are both in initial or final state

- imaginary part (only at hadron colliders):

$$
\operatorname{Im} \boldsymbol{\Gamma}(\{\underline{p}\}, \mu)=+2 \pi \gamma_{\mathrm{cusp}}\left(\alpha_{s}\right) \boldsymbol{T}_{1} \cdot \boldsymbol{T}_{2}+(\ldots) \underset{\uparrow}{\boldsymbol{J G U} \text { Mainz }} \boldsymbol{1}
$$

THEORY OF NON-GLOBAL LHC OBSERVABLES

Novel factorization theorem from SCET

$$
\begin{aligned}
& \sigma_{2 \rightarrow M}\left(Q, Q_{0}\right)=\sum_{a, b=q, \bar{q}, g} \int d x_{1} d x_{2} \sum_{m=2+M}^{\infty}\left\langle\mathcal{H}_{m}^{a b}(\{\underline{n}\}, Q, \mu) \otimes \mathcal{W}_{m}^{a b}\left(\{\underline{n}\}, Q_{0}, x_{1}, x_{2}, \mu\right)\right\rangle \\
& \begin{array}{l}
\text { T. Becher, M. Neubert. D.Y.Shao: Phys. Rev. Lett. } 127 \text { (2021) 212002 } \\
\text { Isee also: T. Becher, M. Neubert, L. Rothen, D.Y. Shao (2015, 2016)] }
\end{array} \quad \text { high scale }
\end{aligned}
$$

Rigorous operator definition:

$$
\begin{gathered}
\mathcal{H}_{m}^{a b}(\{\underline{n}\}, Q, \mu)=\frac{1}{2 Q^{2}} \sum_{\text {spins }} \prod_{i=1}^{m} \int \frac{d E_{i} E_{i}^{d-3}}{(2 \pi)^{d-2}}\left|\mathcal{M}_{m}^{a b}(\{\underline{p}\})\right\rangle\left\langle\mathcal{M}_{m}^{a b}(\{\underline{p}\})\right|(2 \pi)^{d} \delta\left(Q-\sum_{i=1}^{m} E_{i}\right) \delta^{(d-1)}\left(\vec{p}_{\text {tot }}\right) \Theta_{\text {in }}(\{\underline{p}\}) \\
\text { density matrix involving hard-scattering } \\
\text { amplitude (and its conjugate) in } \\
\text { color-space formalism }
\end{gathered}
$$

THEORY OF NON-GLOBAL LHC OBSERVABLES

Novel factorization theorem from SCET

Renormalization-group equation:

$$
\mu \frac{d}{d \mu} \boldsymbol{\mathcal { H }}_{l}^{a b}(\{\underline{n}\}, Q, \mu)=-\sum_{m \leq l} \mathcal{H}_{m}^{a b}(\{\underline{n}\}, Q, \mu) \Gamma_{m l}^{H}(\{\underline{n}\}, Q, \mu)
$$

 infinite space of parton multiplicities

All-order summation of large logarithmic corrections, including the super-leading logarithms!

THEORY OF NON-GLOBAL LHC OBSERVABLES

Evaluate factorization theorem at low scale $\mu_{s} \sim Q_{0}$

- low-energy matrix element:

$$
\mathcal{W}_{m}^{a b}\left(\{\underline{n}\}, Q_{0}, x_{1}, x_{2}, \mu_{s}\right)=f_{a / p}\left(x_{1}\right) f_{b / p}\left(x_{2}\right) \mathbf{1}+\mathcal{O}\left(\alpha_{\mathbf{s}}\right)
$$

- hard-scattering functions:

$$
\mathcal{H}_{m}^{a b}\left(\{\underline{n}\}, Q, \mu_{s}\right)=\sum_{l \leq m} \mathcal{H}_{l}^{a b}(\{\underline{n}\}, Q, Q) \mathbf{P} \exp \left[\int_{\mu_{s}}^{Q} \frac{d \mu}{\mu} \boldsymbol{\Gamma}^{H}(\{\underline{n}\}, Q, \mu)\right]_{l m}
$$

- expanding the solution in a power series generates arbitrarily high parton multiplicities starting from the $2 \rightarrow M$ Born process

THEORY OF NON-GLOBAL LHC OBSERVABLES

Evaluate factorization theorem at low scale $\mu_{s} \sim Q_{0}$

- anomalous-dimension matrix:

$$
\boldsymbol{\Gamma}^{H}=\frac{\alpha_{s}}{4 \pi}\left(\begin{array}{ccccc}
\boldsymbol{V}_{4} & \boldsymbol{R}_{4} & 0 & 0 & \cdots \\
0 & \boldsymbol{V}_{5} & \boldsymbol{R}_{5} & 0 & \cdots \\
0 & 0 & \boldsymbol{V}_{6} & \boldsymbol{R}_{6} & \cdots \\
0 & 0 & 0 & \boldsymbol{V}_{7} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right)
$$

- action on hard functions:

THEORY OF NON-GLOBAL LHC OBSERVABLES

Detailed structure of the anomalous-dimension coefficients

- virtual and real contributions contain collinear singularities, which must be regularized and subtracted:

$$
\left.\begin{array}{l}
\boldsymbol{V}_{m}=\overline{\boldsymbol{V}}_{m}+\boldsymbol{V}^{G}+\sum_{i=1,2} \boldsymbol{V}_{i}^{c} \ln \frac{\mu^{2}}{\hat{s}} \\
\boldsymbol{R}_{m}=\overline{\boldsymbol{R}}_{m}+\sum_{i=1,2} \boldsymbol{R}_{i}^{c} \ln \frac{\mu^{2}}{\hat{s}}
\end{array}\right\} \boldsymbol{\Gamma}=\overline{\boldsymbol{\Gamma}}+\boldsymbol{V}^{G}+\boldsymbol{\Gamma}^{c} \ln \frac{\mu^{2}}{\hat{s}}
$$

- with:

$$
\left.\begin{array}{ll}
\boldsymbol{V}^{G}=-8 i \pi\left(\boldsymbol{T}_{1, L} \cdot \boldsymbol{T}_{2, L}-\boldsymbol{T}_{1, R} \cdot \boldsymbol{T}_{2, R}\right) \quad \text { Coloumb phase } \\
\boldsymbol{V}_{i}^{c}=4 C_{i} \mathbf{1} \\
\boldsymbol{R}_{i}^{c}=-4 \boldsymbol{T}_{i, L} \circ \boldsymbol{T}_{i, R} \delta\left(n_{k}-n_{i}\right)
\end{array}\right\} \quad \text { soft \& collinear terms }
$$

THEORY OF NON-GLOBAL LHC OBSERVABLES

Comments on notation

- color generators $\boldsymbol{T}_{L, i}$ act on the amplitude (multiply hard functions from the left)
- color generators $\boldsymbol{T}_{R, i}$ act on the complex conjugate amplitude (multiply hard functions from the right)
- real-emission terms take an amplitude with m partons and turn it into an amplitude with ($m+1$) partons:

$$
\mathcal{H}_{m} \boldsymbol{T}_{i, L} \circ \boldsymbol{T}_{j, R}=\boldsymbol{T}_{i}^{a} \mathcal{H}_{m} \boldsymbol{T}_{j}^{\tilde{a}}
$$

where a, \tilde{a} are color indices of the emitted gluon (symbol \circ indicates the additional color space of the new parton)

THEORY OF NON-GLOBAL LHC OBSERVABLES

Detailed structure of the anomalous-dimension coefficients

- virtual and real contributions contain collinear singularities, which must be regularized and subtracted:

$$
\left.\begin{array}{l}
\boldsymbol{V}_{m}=\overline{\boldsymbol{V}}_{m}+\boldsymbol{V}^{G}+\sum_{i=1,2} \boldsymbol{V}_{i}^{c} \ln \frac{\mu^{2}}{\hat{s}} \\
\boldsymbol{R}_{m}=\overline{\boldsymbol{R}}_{m}+\sum_{i=1,2} \boldsymbol{R}_{i}^{c} \ln \frac{\mu^{2}}{\hat{s}}
\end{array}\right\} \boldsymbol{\Gamma}=\overline{\boldsymbol{\Gamma}}+\boldsymbol{V}^{G}+\boldsymbol{\Gamma}^{c} \ln \frac{\mu^{2}}{\hat{s}}
$$

- with:
subtracted dipole:

$$
\begin{aligned}
& \overline{\boldsymbol{V}}_{m}=2 \sum_{(i j)}\left(\boldsymbol{T}_{i, L} \cdot \boldsymbol{T}_{j, L}+\boldsymbol{T}_{i, R} \cdot \boldsymbol{T}_{j, R}\right) \int \frac{d \Omega\left(n_{k}\right)}{4 \pi} \bar{W}_{i j}^{k} \\
& \overline{\boldsymbol{R}}_{m}=-4 \sum_{(i j)} \boldsymbol{T}_{i, L} \circ \boldsymbol{T}_{j, R} \bar{W}_{i j}^{m+1} \Theta_{\mathrm{hard}}\left(n_{m+1}\right)
\end{aligned}
$$

THEORY OF NON-GLOBAL LHC OBSERVABLES

SLLs arise from the terms in $\mathbf{P} \exp \left[\int_{\mu_{s}}^{Q} \frac{d \mu}{\mu} \boldsymbol{\Gamma}^{H}(\{\underline{n}\}, Q, \mu)\right]_{l m}$ with the highest number of insertions of Γ_{c}

- three properties simplify the calculation:
- color coherence in absence of Glauber phases (sum of soft emissions off collinear partons has same effect as soft emission of parent parton):

$$
\mathcal{H}_{m} \boldsymbol{\Gamma}^{c} \overline{\boldsymbol{\Gamma}}=\mathcal{H}_{m} \overline{\boldsymbol{\Gamma}} \boldsymbol{\Gamma}^{c}
$$

- collinear safety (singularities from real and virtual emission cancel):

$$
\left\langle\mathcal{H}_{m} \boldsymbol{\Gamma}^{c} \otimes \mathbf{1}\right\rangle=0
$$

- cyclicity of the trace:

$$
\left\langle\mathcal{H}_{m} \boldsymbol{V}^{G} \otimes \mathbf{1}\right\rangle=0
$$

THEORY OF NON-GLOBAL LHC OBSERVABLES

SLLs arise from the terms in $\mathbf{P} \exp \left[\int_{\mu_{s}}^{Q} \frac{d \mu}{\mu} \boldsymbol{\Gamma}^{H}(\{\underline{n}\}, Q, \mu)\right]_{l m}$ with the highest number of insertions of Γ_{c}

- under the color trace, insertions of Γ_{c} are non-zero only if they come in conjunction with (at least) two Glauber phases and one $\bar{\Gamma}$
- relevant color traces:

$$
C_{r n}=\left\langle\mathcal{H}_{2 \rightarrow M}\left(\boldsymbol{\Gamma}^{c}\right)^{r} \boldsymbol{V}^{G}\left(\boldsymbol{\Gamma}^{c}\right)^{n-r} \boldsymbol{V}^{G} \overline{\boldsymbol{\Gamma}} \otimes \mathbf{1}\right\rangle
$$

THEORY OF NON-GLOBAL LHC OBSERVABLES

- relevant color traces:

$$
C_{r n}=\left\langle\mathcal{H}_{2 \rightarrow M}\left(\boldsymbol{\Gamma}^{c}\right)^{r} \boldsymbol{V}^{G}\left(\boldsymbol{\Gamma}^{c}\right)^{n-r} \boldsymbol{V}^{G} \overline{\boldsymbol{\Gamma}} \otimes \mathbf{1}\right\rangle
$$

- extremely simple intermediate result:

$$
\left\langle\mathcal{H}\left(\boldsymbol{\Gamma}^{c}\right)^{n-r} \boldsymbol{V}^{G} \overline{\boldsymbol{\Gamma}} \otimes \mathbf{1}\right\rangle=-64 \pi\left(4 N_{c}\right)^{n-r} f_{a b c} \sum_{j>2}{ }^{\prime} J_{j}\left\langle\mathcal{H} \boldsymbol{T}_{1}^{a} \boldsymbol{T}_{2}^{b} \boldsymbol{T}_{j}^{c}\right\rangle
$$

- kinematic information contained in $(M+1)$ angular integrals:

$$
J_{j}=\int \frac{d \Omega\left(n_{k}\right)}{4 \pi}\left(W_{1 j}^{k}-W_{2 j}^{k}\right) \Theta_{\mathrm{veto}}\left(n_{k}\right) ; \quad \text { with } \quad W_{i j}^{k}=\frac{n_{i} \cdot n_{j}}{n_{i} \cdot n_{k} n_{j} \cdot n_{k}}
$$

RESUMMATION OF SUPER-LEADING LOGARITHMS

General result (valid for arbitrary representations)

$$
C_{r n}=-256 \pi^{2}\left(4 N_{c}\right)^{n-r}\left[\sum_{j=3}^{M+2} J_{j} \sum_{i=1}^{4} c_{i}^{(r)}\left\langle\boldsymbol{\mathcal { H }}_{2 \rightarrow M} \boldsymbol{O}_{i}^{(j)}\right\rangle-J_{2} \sum_{i=1}^{6} d_{i}^{(r)}\left\langle\boldsymbol{\mathcal { H }}_{2 \rightarrow M} \boldsymbol{S}_{i}\right\rangle\right]
$$

- basis of 10 color structures:

$$
\begin{array}{ll}
\boldsymbol{O}_{1}^{(j)}=f_{a b e} f_{c d e} \boldsymbol{T}_{2}^{a}\left\{\boldsymbol{T}_{1}^{b}, \boldsymbol{T}_{1}^{c}\right\} \boldsymbol{T}_{j}^{d}-(1 \leftrightarrow 2) & \boldsymbol{S}_{1}=f_{a b e} f_{c d e}\left\{\boldsymbol{T}_{1}^{b}, \boldsymbol{T}_{1}^{c}\right\}\left\{\boldsymbol{T}_{2}^{a}, \boldsymbol{T}_{2}^{d}\right\} \\
\boldsymbol{O}_{2}^{(j)}=d_{a d e} d_{b c e} \boldsymbol{T}_{2}^{a}\left\{\boldsymbol{T}_{1}^{b}, \boldsymbol{T}_{1}^{c}\right\} \boldsymbol{T}_{j}^{d}-(1 \leftrightarrow 2) & \boldsymbol{S}_{2}=d_{\text {ade }} d_{b c e}\left\{\boldsymbol{T}_{1}^{b}, \boldsymbol{T}_{1}^{c}\right\}\left\{\boldsymbol{T}_{2}^{a}, \boldsymbol{T}_{2}^{d}\right\} \\
\boldsymbol{O}_{3}^{(j)}=\boldsymbol{T}_{2}^{a}\left\{\boldsymbol{T}_{1}^{a}, \boldsymbol{T}_{1}^{b}\right\} \boldsymbol{T}_{j}^{b}-(1 \leftrightarrow 2) & \boldsymbol{S}_{3}=d_{\text {ade }} d_{b c e}\left[\boldsymbol{T}_{2}^{a}\left(\boldsymbol{T}_{1}^{b} \boldsymbol{T}_{1}^{c} \boldsymbol{T}_{1}^{d}\right)_{+}+(1 \leftrightarrow 2)\right] \\
\boldsymbol{O}_{4}^{(j)}=2 C_{1} \boldsymbol{T}_{2} \cdot \boldsymbol{T}_{j}-2 C_{2} \boldsymbol{T}_{1} \cdot \boldsymbol{T}_{j} & \boldsymbol{S}_{4}=\left\{\boldsymbol{T}_{1}^{a}, \boldsymbol{T}_{1}^{b}\right\}\left\{\boldsymbol{T}_{2}^{a}, \boldsymbol{T}_{2}^{b}\right\} \\
& \boldsymbol{S}_{5}=\boldsymbol{T}_{1} \cdot \boldsymbol{T}_{2} \\
& \boldsymbol{S}_{6}=\mathbf{1}
\end{array}
$$

RESUMMATION OF SUPER-LEADING LOGARITHMS

General result (valid for arbitrary representations)

$$
C_{r n}=-256 \pi^{2}\left(4 N_{c}\right)^{n-r}\left[\sum_{j=3}^{M+2} J_{j} \sum_{i=1}^{4} c_{i}^{(r)}\left\langle\boldsymbol{\mathcal { H }}_{2 \rightarrow M} \boldsymbol{O}_{i}^{(j)}\right\rangle-J_{2} \sum_{i=1}^{6} d_{i}^{(r)}\left\langle\boldsymbol{\mathcal { H }}_{2 \rightarrow M} \boldsymbol{S}_{i}\right\rangle\right]
$$

- recurrence relations:

$$
\begin{aligned}
& c_{1}^{(s+1)}=6 N_{c} c_{1}^{(s)}+4 c_{3}^{(s)} \\
& c_{2}^{(s+1)}=N_{c} c_{1}^{(s)}+4 N_{c} c_{2}^{(s)} \\
& c_{3}^{(s+1)}=4 c_{1}^{(s)}+6 N_{c} c_{3}^{(s)} \\
& c_{4}^{(s+1)}=4 c_{1}^{(s)}+2 N_{c} c_{4}^{(s)}
\end{aligned}
$$

$$
d_{1}^{(s+1)}=2 N_{c} c_{1}^{(s)}+4 c_{3}^{(s)}+8 N_{c} d_{1}^{(s)}+8 d_{4}^{(s)}
$$

$$
d_{2}^{(s+1)}=N_{c} c_{1}^{(s)}+2 N_{c} d_{1}^{(s)}+4 N_{c} d_{2}^{(s)}
$$

$$
d_{3}^{(s+1)}=2 N_{c} c_{1}^{(s)}+4 N_{c} d_{3}^{(s)}
$$

$$
d_{4}^{(s+1)}=4 c_{1}^{(s)}+2 N_{c} c_{3}^{(s)}+8 d_{1}^{(s)}+8 N_{c} d_{4}^{(s)}
$$

$$
d_{5}^{(s+1)}=4\left(C_{1}+C_{2}\right)\left[4 c_{1}^{(s)}+N_{c} c_{3}^{(s)}-N_{c} c_{4}^{(s)}\right]-\frac{2 N_{c}\left(N_{c}^{2}+8\right)}{3} c_{1}^{(s)}-4 N_{c}^{2} c_{3}^{(s)}+4 N_{c} d_{5}^{(s)}
$$

$$
d_{6}^{(s+1)}=8 C_{1} C_{2}\left[2 c_{1}^{(s)}-N_{c} c_{4}^{(s)}+4 d_{1}^{(s)}\right]
$$

RESUMMATION OF SUPER-LEADING LOGARITHMS

General result (valid for arbitrary representations)

$$
C_{r n}=-256 \pi^{2}\left(4 N_{c}\right)^{n-r}\left[\sum_{j=3}^{M+2} J_{j} \sum_{i=1}^{4} c_{i}^{(r)}\left\langle\boldsymbol{\mathcal { H }}_{2 \rightarrow M} \boldsymbol{O}_{i}^{(j)}\right\rangle-J_{2} \sum_{i=1}^{6} d_{i}^{(r)}\left\langle\boldsymbol{\mathcal { H }}_{2 \rightarrow M} \boldsymbol{S}_{i}\right\rangle\right]
$$

coefficient functions:

$$
\begin{aligned}
c_{1}^{(r)} & =2^{r-1}\left[\left(3 N_{c}+2\right)^{r}+\left(3 N_{c}-2\right)^{r}\right] \\
c_{2}^{(r)} & =2^{r-2} N_{c}\left[\frac{\left(3 N_{c}+2\right)^{r}}{N_{c}+2}+\frac{\left(3 N_{c}-2\right)^{r}}{N_{c}-2}-\frac{\left(2 N_{c}\right)^{r+1}}{N_{c}^{2}-4}\right] \\
c_{3}^{(r)} & =2^{r-1}\left[\left(3 N_{c}+2\right)^{r}-\left(3 N_{c}-2\right)^{r}\right] \\
c_{4}^{(r)} & =2^{r-1}\left[\frac{\left(3 N_{c}+2\right)^{r}}{N_{c}+1}+\frac{\left(3 N_{c}-2\right)^{r}}{N_{c}-1}-\frac{2 N_{c}^{r+1}}{N_{c}^{2}-1}\right]
\end{aligned}
$$

RESUMMATION OF SUPER-LEADING LOGARITHMS

General result (valid for arbitrary representations)

$$
C_{r n}=-256 \pi^{2}\left(4 N_{c}\right)^{n-r}\left[\sum_{j=3}^{M+2} J_{j} \sum_{i=1}^{4} c_{i}^{(r)}\left\langle\mathcal{H}_{2 \rightarrow M} \boldsymbol{O}_{i}^{(j)}\right\rangle-J_{2} \sum_{i=1}^{6} d_{i}^{(r)}\left\langle\mathcal{H}_{2 \rightarrow M} \boldsymbol{S}_{i}\right\rangle\right]
$$

- series of SLLs, starting at 3-loop order:

$$
\sigma_{\mathrm{SLL}}=\sigma_{\mathrm{Born}} \sum_{n=0}^{\infty}\left(\frac{\alpha_{s}}{4 \pi}\right)^{n+3} L^{2 n+3} \frac{(-4)^{n} n!}{(2 n+3)!} \sum_{r=0}^{n} \frac{(2 r)!}{4^{r}(r!)^{2}} C_{r n}
$$

- reproduces all that is known about SLLs (and much more...)

RESUMMATION OF SUPER-LEADING LOGARITHMS

Simplifications for (anti-)quark-initiated processes

- in the fundamental representation, symmetrized products of color generators can be reduced ($\sigma_{i}= \pm 1$ for (anti-)quarks):

$$
\left\{\boldsymbol{T}_{i}^{a}, \boldsymbol{T}_{i}^{b}\right\}=\frac{1}{N_{c}} \delta_{a b}+\sigma_{i} d_{a b c} \boldsymbol{T}_{i}^{c}
$$

- simple results in terms of three non-trivial color structures:

$$
\begin{aligned}
C_{r n}=-2^{8-r} \pi^{2}\left(4 N_{c}\right)^{n}\{ & \sum_{j=3}^{M+2} J_{j}\left\langle\mathcal{H}_{2 \rightarrow M}\left[\left(\boldsymbol{T}_{1}-\boldsymbol{T}_{2}\right) \cdot \boldsymbol{T}_{j}-2^{r-1} N_{c}\left(\sigma_{1}-\sigma_{2}\right) d_{a b c} \boldsymbol{T}_{1}^{a} \boldsymbol{T}_{2}^{b} \boldsymbol{T}_{j}^{c}\right]\right\rangle \\
& \left.-2\left(1-\delta_{r 0}\right) J_{2}\left\langle\mathcal{H}_{2 \rightarrow M}\left[C_{F} \mathbf{1}+\left(2^{r}-1\right) \boldsymbol{T}_{1} \cdot \boldsymbol{T}_{2}\right]\right\rangle\right\}
\end{aligned}
$$

RESUMMATION OF SUPER-LEADING LOGARITHMS

Summation of super-leading logarithms for $q q \rightarrow q q$ scattering:

$$
\sigma_{\mathrm{SLL}}^{(S)}=-\sigma_{\text {Born }} \frac{16 \alpha_{s} L}{27 N_{c} \pi} \Delta Y\left(\frac{N_{c} \alpha_{s}}{\pi} \pi^{2}\right) w_{2} F_{2}\left(1,1 ; 2, \frac{5}{2} ;-w\right)
$$

T. Becher, M. Neubert, D. Y. Shao: Phys. Rev. Lett. 127 (2021) 212002

RESUMMATION OF SUPER-LEADING LOGARITHMS

Summation of super-leading logarithms for $q q \rightarrow q q$ scattering:

$$
\sigma_{\mathrm{SLL}}^{(S)}=-\sigma_{\text {Born }} \frac{16 \alpha_{s} L}{27 N_{c} \pi} \Delta Y\left(\frac{N_{c} \alpha_{s}}{\pi} \pi^{2}\right) w_{2} F_{2}\left(1,1 ; 2, \frac{5}{2} ;-w\right)
$$

T. Becher, M. Neubert, D. Y. Shao: Phys. Rev. Lett. 127 (2021) 212002

- asymptotic behavior for $L \rightarrow \infty$:

$$
w_{2} F_{2}\left(1,1 ; 2, \frac{5}{2} ;-w\right) \rightarrow \frac{3}{2}\left[\ln (4 w)+\gamma_{E}-2\right]
$$

- very different from standard Sudakov double logarithms $\sim e^{-w}$
- expect even larger effects for gluon-initiated processes!

IMPORTANT REMARKS

- SCET-based approach solves 16-year old OCD problem, extending existing results to all orders of perturbation theory and to arbitrary $2 \rightarrow M$ hard-scattering processes
- master formula also applies to cases where $M=1$ or even $M=0$, which were not considered before (SLLs start at 4- and 5-loop order, respectively)
- relevant for both SM phenomenology (e.g. $p p \rightarrow h+$ jet) and New-Physics searches (e.g. WIMP searches in $p p \rightarrow$ jet $+E_{T}$)

CONCLUSIONS

Toward a complete theory of LHC jet processes

- powerful new factorization theorem derived using SCET
- in future, extension to massive final-state partons and calculations beyond leading logarithms
- detailed study of low-energy matrix elements using SCET with Glauber gluons will offer an ab initio understanding of violations of conventional factorization (perturbative part of "underlying event")
- results very relevant for future improvements of parton showers
- new levels of precision in predictions for important LHC processes

