Next-to-leading non-global logarithms in the planar limit

Pier Monni (CERN)
with A. Banfi, F. Dreyer
JHEP 10 (2021) 006 [2104.06416] + JHEP 03 (2022) 135 [2111.02413]

SCET 2022 - University of Bern - April 2022

Non-global logarithms are ubiquitous in collider physics

- Jets and fiducial cuts, e.g. jet mass, rapidity cuts, isolation, Higgs ggF vs. VBF, ...
- Accuracy of parton showers (PS): NLL nonglobal logarithms ($\alpha_{s}^{n} L^{n-1}$) critical for NNLL PS

Dipole
PanGlobal

- Insight into high-energy dynamics (BK/JIMWLK) via stereographic projection of evolution equation (Py8/Dire v1) $\quad\left(\beta=\frac{1}{2}\right)$

[Dasgupta, Dreyer, Hamilton, PM, Salam, Soyez '20]
- Resummation of $\operatorname{LL}\left(\alpha_{s}^{n} L^{n}\right)$ corrections known for a long time and studied in depth
[Dasgupta, Salam '01-'02; Banfi, Marchesini, Smye '02; Forshaw et al. '06-'09] Full Nc (FSR) in: [Weigert '03; Hatta, Ueda '13-'20 (+Hagiwara '15)] (see M. Neubert's talk for issues at hadron colliders)
- Revived interest more recently and new formulations with modern QFT techniques
[Becher, Neubert, Rothen, Shao '15-16 (+ Pecjak '16, Rahn '17, Balsiger '18-'19, Ferroglia '20);
Larkoski, Moult, Neill '15-'16; Caron-Huot ' 16 ; Plaetzer, Ruffa '20; Banfi, Dreyer, PM '21; Becher, Rauh, Xu '21]

Resummation of NLL corrections remains a great technical challenge due to the complexity of the geometry and colour structure

- GOAL of this work \Rightarrow formulate a solution to the problem (in the planar limit) in a way that can be applied to a variety of NG observables and processes

A simple example: cone-jet cross section with a veto

- Consider the production of two cone jets at lepton colliders, with a veto on radiation in the interjet region

Apply a veto e.g. on energy or transverse energy of the radiation in the gap.
Need to calculate distribution of soft gluons on the sphere as a function of the veto scale

Factorisation of the cross section

- Cumulative cross section receives contributions from hard configurations with different multiplicity

The soft factors

Evolution of the soft factors: colour \& planar limit

- Complexity growth of colour structure: full squared amplitude can be worked out in large- N_{c}
e.g. O (ass) evolution (LL)
$\mathbf{T}_{i} \cdot \mathbf{T}_{j} \sim N_{c} \delta_{j, i \pm 1}$

$\mathcal{A}_{12}^{2}=\bar{\alpha}^{n}(\mu)(2 \pi)^{2 n}\left(\mu^{2 \epsilon}\right)^{n} \sum_{\pi_{n}} \frac{\left(p_{1} \cdot p_{2}\right)}{\left(p_{1} \cdot k_{i_{1}}\right)\left(k_{i_{1}} \cdot k_{i_{2}}\right) \ldots\left(k_{i_{n}} \cdot p_{2}\right)}$
[Bassetto, Ciafaloni, Marchesini ’83; Fiorani, Marchesini, Reina '88]
- Define Laplacian soft factors and their evolution equations with energy scale (e.g. dipole k_{t})

$$
\begin{aligned}
& S_{n}(v)= \int \frac{d \nu}{2 \pi i} e^{\nu v} Z_{12 \ldots n}[Q ; u] ; \quad Q \partial_{Q} Z_{12}[Q ; u]=\mathbb{K}[Z[Q, u], u] ; \quad u=e^{-\nu v(k)}=\text { source } \\
& \downarrow \\
& Z_{123}=Z_{12} Z_{23} \text { in planar limit }
\end{aligned}
$$

Evolution of the soft factors: integral equations and geometry

- Evolution equations can be expressed conveniently in integral form
- At LL (one loop kernel) they reduce to the BMS equation (definition of Z_{12})

$$
\begin{aligned}
Z_{12}[Q ;\{u\}]=\Delta_{12}(Q) & +\int\left[d k_{a}\right] \bar{\alpha}\left(k_{t a}\right) w_{12}^{(0)}\left(k_{a}\right) \frac{\Delta_{12}(Q)}{\Delta_{12}\left(k_{t a}\right)} \\
& \times Z_{1 a}\left[k_{t a} ;\{u\}\right] Z_{a 2}\left[k_{t a} ;\{u\}\right] u\left(k_{a}\right) \Theta\left(Q-k_{t a}\right)
\end{aligned}
$$

Sudakov: no-emission probability (defined by unitarity $Z_{12}[Q ;\{u=1\}]=1$,
standard evolution of soft virtual squared amplitudes)
[Dasgupta, Salam '01; Banfi, Marchesini, Smye '01]

Evolution of the soft factors: integral equations and geometry

- Evolution equations can be expressed conveniently in integral form
- At LL (one loop kernel) they reduce to the BMS equation (definition of Z_{12})

$$
\begin{aligned}
Z_{12}[Q ;\{u\}]=\Delta_{12}(Q) & +\int\left[d k_{a}\right] \bar{\alpha}\left(k_{t a}\right) w_{12}^{(0)}\left(k_{a}\right) \frac{\Delta_{12}(Q)}{\Delta_{12}\left(k_{t a}\right)} \\
& \times Z_{1 a}\left[k_{t a} ;\{u\}\right] Z_{a 2}\left[k_{t a} ;\{u\}\right] u\left(k_{a}\right) \Theta\left(Q-k_{t a}\right)
\end{aligned}
$$

Sudakov: no-emission probability (defined by unitarity $Z_{12}[Q ;\{u=1\}]=1$,
standard evolution of soft virtual squared amplitudes)
)
[Dasgupta, Salam '01; Banfi, Marchesini, Smye '01]

Symmetries of squared amplitude allow for an iterative reconstruction (strong(y) ordered in dipole k_{t}

Evolution of the soft factors: integral equations and geometry

- Evolution equations can be expressed conveniently in integral form
- At LL (one loop kernel) they reduce to the BMS equation (definition of Z_{12})

$$
\begin{aligned}
Z_{12}[Q ;\{u\}]=\Delta_{12}(Q) & +\int\left[d k_{a}\right] \bar{\alpha}\left(k_{t a}\right) w_{12}^{(0)}\left(k_{a}\right) \frac{\Delta_{12}(Q)}{\Delta_{12}\left(k_{t a}\right)} \\
& \times Z_{1 a}\left[k_{t a} ;\{u\}\right] Z_{a 2}\left[k_{t a} ;\{u\}\right] u\left(k_{a}\right) \Theta\left(Q-k_{t a}\right)
\end{aligned}
$$

Sudakov: no-emission probability (defined by unitarity $Z_{12}[Q ;\{u=1\}]=1$,
standard evolution of soft virtual squared amplitudes)
[Dasgupta, Salam '01; Banfi, Marchesini, Smye 'o1]

Symmetries of squared amplitude allow for an iterative reconstruction (strongly) ordered in dipole k_{t}

Evolution of the soft factors: integral equations and geometry

- Evolution equations can be expressed conveniently in integral form
- At LL (one loop kernel) they reduce to the BMS equation (definition of Z_{12})

$$
\begin{aligned}
Z_{12}[Q ;\{u\}]=\Delta_{12}(Q) & +\int\left[d k_{a}\right] \bar{\alpha}\left(k_{t a}\right) w_{12}^{(0)}\left(k_{a}\right) \frac{\Delta_{12}(Q)}{\Delta_{12}\left(k_{t a}\right)} \\
& \times Z_{1 a}\left[k_{t a} ;\{u\}\right] Z_{a 2}\left[k_{t a} ;\{u\}\right] u\left(k_{a}\right) \Theta\left(Q-k_{t a}\right)
\end{aligned}
$$

Sudakov: no-emission probability (defined by unitarity $Z_{12}[Q ;\{u=1\}]=1$,
standard evolution of soft virtual squared amplitudes)

[Dasgupta, Salam '01; Banfi, Marchesini, Smye '01]

Symmetries of squared amplitude allow for an iterative reconstruction (strongly) ordered in dipole \mathbf{k}_{t}

Integral evolution equations: NLL (two loop kernel)

$$
Z_{12}[Q ;\{u\}]=\mathbb{K}_{\mathrm{int}}^{\mathrm{RV}+\mathrm{VV}}[Z[Q ; u], u]+\mathbb{K}_{\mathrm{int}}^{\mathrm{RR}}[Z[Q ; u], u]-\mathbb{K}_{\mathrm{int}}^{\mathrm{DC}}[Z[Q ; u], u]
$$

subtraction of iteration of LL kernel (no double counting)
two unordered real gluons

(planar limit of double soft squared gauge current)

Integral evolution equations: NLL (two loop kernel)

$$
Z_{12}[Q ;\{u\}]=\mathbb{K}_{\mathrm{int}}^{\mathrm{RV}+\mathrm{VV}}[Z[Q ; u], u]+\mathbb{K}_{\mathrm{int}}^{\mathrm{RR}}[Z[Q ; u], u]-\mathbb{K}_{\mathrm{int}}^{\mathrm{DC}}[Z[Q ; u], u]
$$

two unordered real gluons
(planar limit of double soft squared gauge current)

- local counter-term
+ integrated counter-terms
Introduce IRC counter-term to make each term manifestly finite in 4 dimensions

Integral evolution equations: new structures at NLL

$$
\supset Z_{12} \rightarrow Z_{1 i} Z_{i 2}
$$

$$
\supset Z_{12} \rightarrow Z_{1 i} Z_{i j} Z_{j 2}
$$

Same structure as in LL kernel ($1 \rightarrow 2$ dipole hranching)
Easy to iterate with Monte Carlo methods

New structure of double real radiation
($1 \rightarrow 2$ dipole hranching)
Hard to iterate with Monte Carlo methods

The hard factors

- Computed by matching the soft theory to full QCD
- Cancellation of collinear divergences between H_{2} and H_{3} (only combination is scheme independent) e.g. H_{3}

- Computed by matching the soft theory to full QCD
- Cancellation of collinear divergences between H_{2} and H_{3} (only combination is scheme independent) e.g. H_{2} :

$$
\begin{aligned}
& c \equiv \cos \left(\theta_{\text {jet }}\right) \\
& \Leftrightarrow \mathcal{H}_{2}^{(1)}=\frac{C_{F}}{2\left(1-c^{2}\right)^{2}}\left(4\left(1-c^{2}\right)^{2}\left(\operatorname{Li}_{2}\left(\frac{1+c}{2}\right)-\operatorname{Li}_{2}\left(\frac{1-c}{2}\right)\right)\right. \\
& \\
& \quad-2\left(1-c^{2}\right)^{2} \log ^{2}(1+c)+16 c\left(3+c^{2}\right) \ln (2)-\left(1-c^{2}\right)(c(16+3 c)-3) \\
& \\
& \quad+2 \ln (1-c)\left(-2\left(1+c^{4}\right) \log (2)-4 c\left(3+c^{2}\right)+\left(1-c^{2}\right)^{2} \ln (1-c)\right) \\
& \\
& \left.\quad+\left(4\left(1+c^{4}\right) \ln (2)-8 c\left(3+c^{2}\right)\right) \ln (1+c)-4\left(-3 c^{4}+2 c^{2}(9+2 \ln (2))+1\right) \tanh ^{-1}(c)\right)
\end{aligned}
$$

Perturbative solution \& results

$$
\begin{aligned}
Z_{12}[Q ;\{u\}]= & \mathbb{K}_{\mathrm{int}}^{\mathrm{RV}+\mathrm{vv}}[Z[Q ; u], u]+\mathbb{K}_{\mathrm{int}}^{\mathrm{RR}}[Z[Q ; u], u]-\mathbb{K}_{\mathrm{int}}^{\mathrm{DC}}[Z[Q ; u], u] \\
& \supset Z_{12} \rightarrow Z_{1 i} Z_{i 2} \quad \supset Z_{12} \rightarrow Z_{1 i} Z_{i j} Z_{j 2}
\end{aligned}
$$

- Recast evolution equations in terms of generating functionals (\rightarrow calculation of probabilities \rightarrow Monte Carlo) see e. g. [Konishi, Ukawa, Veneziano '79; Dokshitzer, Khoze, Mueller, Troyan '91]

$$
d P_{n}=\left.\aleph(n) \prod_{i=1}^{n}\left[d k_{i}\right] \frac{\delta}{\delta u\left(k_{i}\right)} Z_{12}[Q ;\{u\}]\right|_{\{u\}=0}, \frac{\delta}{\delta u\left(k_{i}\right)} u(k) \equiv \bar{\delta}\left(k-k_{i}\right)
$$

- Cross section becomes:

$+\mathcal{H}_{3} \otimes\left[\left(\sum_{i=0}^{\infty} \int d P_{i}^{\{13\}}\right)\left(\sum_{j=0}^{\infty} \int d P_{j}^{\{23\}}\right) \Theta\left(v-V\left(\left\{k_{i}\right\},\left\{k_{j}\right\}\right)\right)\right]+\mathcal{O}(\mathrm{NNLL})$

Perturbative solution of the NLL evolution equation

- All-order solution can be formulated in a perturbative form, i.e.
- Linearise evolution equation in $Z^{(1)}$ by neglecting $\left(Z^{(1)}\right)^{2}$ corrections (NNLL and higher)

All-order iteration of $Z^{(0)}$ and a single insertion of $Z^{(1)}$ at any scale in the evolution graph (truncated shower).
Structure emerges from the ev. eqn.

Fixed order checks

- O(as $\left.{ }^{2}\right)$ expansion expected to reproduce the logarithmic structure of QCD

$$
\Delta(L):=\frac{1}{\sigma_{0}}\left(\frac{d \Sigma^{\mathrm{NLO}}}{d L}-\frac{d \Sigma^{\mathrm{EXP}} .}{d L}\right) \quad \text { expect } \quad \lim _{L \rightarrow \infty} \Delta(L)=0
$$

OK for different jet-cone sizes

All order results at NLL: narrow cone jets

NLL corrections sizeable (up to $\sim 40 \%$), significant ($\sim 50 \%$) reduction of perturbative uncertainty

$$
\Sigma(v):=\frac{1}{\sigma_{0}} \int_{0}^{v} \frac{d \sigma}{d v^{\prime}} d v^{\prime}
$$

All order results at NLL: narrow cone jets

All order results at NLL: narrow cone jets

All order results at NLL: fat cone jets

All order results at NLL: fat cone jets

Conclusions \& Outlook

- Formalism for calculation of non-global corrections at NLL in the planar limit:
- Soft evolution solvable in terms of colour dipoles with Monte Carlo methods
- NLL resummation for final-state radiation in $\mathrm{e}^{+}{ }^{-}$(veto in interjet rapidity gap). NLL corrections are substantial (up to $\sim 40 \%$), with a considerable reduction of TH errors ($\sim 50 \%$)
- Next steps:
- Self-similar iteration of $Z^{(1)}$ (formally sub-leading), connection between orderings and RGE
- Application to pp collisions (process dependence encoded in hard factors; complications arise at sub-leading N_{c}, e.g. SLL)
- MC algorithm closely related to a parton shower: important insight on NNLL PS structure

Extra material

Non-global logarithms \& BFLK

- Stereographic projection relates NGL evolution equation (BMS) to saturation dynamics in high-energy forward scattering (BK/JIMWLK) at all orders
[Weigert '03; Hatta '08; Caron-Huot '15]

$$
\cos \theta=\frac{1-|\vec{x}|^{2}}{1+|\vec{x}|^{2}}, \quad \sin \theta=\frac{2|\vec{x}|}{1+|\vec{x}|^{2}}, \quad \cos \phi=\frac{x^{1}}{|\vec{x}|^{2}}, \quad \sin \phi=\frac{x^{2}}{|\vec{x}|}
$$

i.e. distribution of small-x gluons in the transverse plane is equivalent
$\frac{d^{2} \Omega_{k}}{4 \pi} \frac{1-\cos \theta_{a b}}{\left(1-\cos \theta_{a k}\right)\left(1-\cos \theta_{b k}\right)} \stackrel{\downarrow}{=} \frac{d^{2} \vec{x}_{k}}{2 \pi} \frac{\left(\vec{x}_{a b}\right)^{2}}{\left(\vec{x}_{a k}\right)^{2}\left(\vec{x}_{b k}\right)^{2}}$
to angular distribution of soft gluons on the sphere at infinity

$$
\begin{gathered}
Z_{12}[Q ;\{u\}]=\begin{array}{l}
=\mathbb{K} \mathrm{K} \mathrm{int}-\mathrm{VV}[Z[Q ; u], u]]+\mathbb{K}_{\mathrm{int}}^{\mathrm{RR}}[Z[Q ; u], u]-\mathbb{K}_{\mathrm{int}}^{\mathrm{PC}}[Z[Q ; u], u] \\
\text { two-loop cusp anomalous dimension }
\end{array} \\
\mathbb{K}_{\mathrm{int}}^{\mathrm{RV}+\mathrm{VV}^{2}}[Z[Q ; u], u]=\Delta_{12}(Q)+\int\left[d k_{a}\right] \bar{\alpha}\left(k_{t a}\right) w_{12}^{(0)}\left(k_{a}\right)\left(1+\bar{\alpha}\left(k_{t a}\right) \bar{K}^{(1)}\right) \frac{\Delta_{12}(Q)}{\Delta_{12}\left(k_{t a}\right)} \\
\times Z_{1 a}\left[k_{t a} ;\{u\}\right] Z_{a 2}\left[k_{t a} ;\{u\}\right] u\left(k_{a}\right) \Theta\left(Q-k_{t a}\right)
\end{gathered}
$$

Same structure as LL kernel
 ($1 \rightarrow 2$ dipole branching) Easy to iterate in a MCMC

$$
\begin{aligned}
& Z_{12}[Q ;\{u\}]=\mathbb{K}_{\mathrm{int}}^{\mathrm{RV}+\mathrm{VV}}[Z[Q ; u], u]+\mathbb{K}_{\mathrm{int}}^{\mathrm{RR}}[Z[Q ; u], u]_{,}^{\prime}-\mathbb{K}_{\mathrm{int}}^{\mathrm{DC}}[Z[Q ; u], u] \\
& \mathbb{K}_{\mathrm{int}}^{\mathrm{RR}}[Z[Q ; u], u]=\int\left[d k_{a}\right] \int\left[d k_{b}\right] \bar{\alpha}^{2}\left(k_{t(a b)}\right) \Theta\left(Q-k_{t(a b)}\right) \Theta\left(k_{t a}-k_{t b}^{\prime}\right) \frac{\Delta_{12}(Q)}{\Delta_{12}\left(k_{t(a b)}\right)} \\
& \times\left[\bar{w}_{12}^{(g g)}\left(k_{b}, k_{a}\right) Z_{1 b}\left[k_{t(a b)} ;\{u\}\right] Z_{b a}\left[k_{t(a b)} ;\{u\}\right] Z_{a 2}\left[k_{t(a b)} ;\{u\}\right] u\left(k_{a}\right) u\left(k_{b}\right)\right. \\
& +\bar{w}_{12}^{(g g)}\left(k_{a}, k_{b}\right) Z_{1 a}\left[k_{t(a b)} ;\{u\}\right] Z_{a b}\left[k_{t(a b)} ;\{u\}\right] Z_{b 2}\left[k_{t(a b)} ;\{u\}\right] u\left(k_{a}\right) u\left(k_{b}\right) \\
& \left.:-\left(\bar{w}_{12}^{(g)^{2}}\left(k_{b}, k_{a}\right)+\bar{w}_{12}^{(g g)}\left(k_{a}, k_{b}\right)\right) Z_{1(a b)}\left[k_{t(a b)} ;\{u\}\right] Z_{(a b) 2}\left[k_{t(a b)} ;\{u\}\right] u\left(k_{(a b)}\right)\right] \text {, }
\end{aligned}
$$

New structure of real radiation

$(1 \rightarrow 3$ dipole branching) Hard to iterate in a MCMC
collinear counter-term defined on a projected pseudo-parent momentum

$$
Z_{12}[Q ;\{u\}]=\mathbb{K}_{\mathrm{int}}^{\mathrm{RV}+\mathrm{VV}}[Z[Q ; u], u]+\mathbb{K}_{\mathrm{int}}^{\mathrm{RR}}[Z[Q ; u], u]-\mathbb{K}_{\mathrm{int}}^{\mathrm{DC}}[Z[Q ; u], u]
$$

$$
\begin{aligned}
& \mathbb{K}_{\text {int }}^{\mathrm{DC}}[Z[Q ; u], u]=\int\left[d k_{a}\right] \int\left[d k_{b}\right] \bar{\alpha}^{2}\left(k_{t a}\right) \Theta\left(Q-k_{t a}\right) \Theta\left(k_{t a}-k_{t b}\right) \frac{\Delta_{12}(Q)}{\Delta_{12}\left(k_{t a}\right)} \\
& \quad \times\left[w_{12}^{(0)}\left(k_{a}\right)\left(w_{1 a}^{(0)}\left(k_{b}\right)-\frac{1}{2} w_{12}^{(0)}\left(k_{b}\right)\right) Z_{1 b}\left[k_{t a} ;\{u\}\right] Z_{b a}\left[k_{t a} ;\{u\}\right] Z_{a 2}\left[k_{t a} ;\{u\}\right] u\left(k_{a}\right) u\left(k_{b}\right)\right. \\
& \quad+w_{12}^{(0)}\left(k_{a}\right)\left(w_{a 2}^{(0)}\left(k_{b}\right)-\frac{1}{2} w_{12}^{(0)}\left(k_{b}\right)\right) Z_{1 a}\left[k_{t a} ;\{u\}\right] Z_{a b}\left[k_{t a} ;\{u\}\right] Z_{b 2}\left[k_{t a} ;\{u\}\right] u\left(k_{a}\right) u\left(k_{b}\right) \\
& \left.\quad-w_{12}^{(0)}\left(k_{a}\right)\left(w_{1 a}^{(0)}\left(k_{b}\right)+w_{a 2}^{(0)}\left(k_{b}\right)-w_{12}^{(0)}\left(k_{b}\right)\right) Z_{1 a}\left[k_{t a} ;\{u\}\right] Z_{a 2}\left[k_{t a} ;\{u\}\right] u\left(k_{a}\right)\right]
\end{aligned}
$$

Perturbative insertion of double-real corrections

$$
\begin{aligned}
Z_{12}^{(1)}[Q ; & \{u\}] \simeq \int\left[d k_{a}\right] \bar{\alpha}\left(k_{t a}\right) w_{12}^{(0)}\left(k_{a}\right) \frac{\Delta_{12}(Q)}{\Delta_{12}\left(k_{t a}\right)} \\
& \times\left(Z_{1 a}^{(0)}\left[k_{t a} ;\{u\}\right] Z_{a 2}^{(1)}\left[k_{t a} ;\{u\}\right]+Z_{1 a}^{(1)}\left[k_{t a} ;\{u\}\right] Z_{a 2}^{(0)}\left[k_{t a} ;\{u\}\right]\right) u\left(k_{a}\right) \Theta\left(Q-k_{t a}\right) \\
+ & \int\left[d k_{a}\right] \int\left[d k_{b}\right] \bar{\alpha}^{2}\left(k_{t(a b)}\right) \Theta\left(Q-k_{t(a b)}\right) \Theta\left(k_{t a}-k_{t b}^{\prime}\right) \frac{\Delta_{12}(Q)}{\Delta_{12}\left(k_{t(a b)}\right)} \\
& \times\left[\tilde{w}_{12}^{(0)}\left(k_{b}, k_{a}\right) Z_{1 b}^{(0)}\left[k_{t(a b)} ;\{u\}\right] Z_{b a}^{(0)}\left[k_{t(a b)} ;\{u\}\right] Z_{a 2}^{(0)}\left[k_{t(a b)} ;\{u\}\right] u\left(k_{a}\right) u\left(k_{b}\right)\right. \\
& +\tilde{w}_{12}^{(0)}\left(k_{a}, k_{b}\right) Z_{1 a}^{(0)}\left[k_{t(a b)} ;\{u\}\right] Z_{a b}^{(0)}\left[k_{t(a b)} ;\{u\}\right] Z_{b 2}^{(0)}\left[k_{t(a b)} ;\{u\}\right] u\left(k_{a}\right) u\left(k_{b}\right) \\
& \left.-\left(\tilde{w}_{12}^{(0)}\left(k_{b}, k_{a}\right)+\tilde{w}_{12}^{(0)}\left(k_{a}, k_{b}\right)\right) Z_{1(a b)}^{(0)}\left[k_{t(a b)} ;\{u\}\right] Z_{(a b) 2}^{(0)}\left[k_{t(a b)} ;\{u\}\right] u\left(k_{(a b)}\right)\right] \\
- & \int\left[d k_{a}\right] \int\left[d k_{b}\right] \bar{\alpha}^{2}\left(k_{t a}\right) \Theta\left(Q-k_{t a}\right) \Theta\left(k_{t a}-k_{t b}\right) \frac{\Delta_{12}(Q)}{\Delta_{12}\left(k_{t a}\right)} \\
& \times\left[w_{12}^{(0)}\left(k_{a}\right) w_{1 a}^{(0)}\left(k_{b}\right) Z_{1 b}^{(0)}\left[k_{t a} ;\{u\}\right] Z_{b a}^{(0)}\left[k_{t a} ;\{u\}\right] Z_{a 2}^{(0)}\left[k_{t a} ;\{u\}\right] u\left(k_{a}\right) u\left(k_{b}\right)\right. \\
& +w_{12}^{(0)}\left(k_{a}\right) w_{a 2}^{(0)}\left(k_{b}\right) Z_{1 a}^{(0)}\left[k_{t a} ;\{u\}\right] Z_{a b}^{(0)}\left[k_{t a} ;\{u\}\right] Z_{b 2}^{(0)}\left[k_{t a} ;\{u\}\right] u\left(k_{a}\right) u\left(k_{b}\right) \\
& \left.-w_{12}^{(0)}\left(k_{a}\right)\left(w_{1 a}^{(0)}\left(k_{b}\right)+w_{a 2}^{(0)}\left(k_{b}\right)\right) Z_{1 a}^{(0)}\left[k_{t a} ;\{u\}\right] Z_{a 2}^{(0)}\left[k_{t a} ;\{u\}\right] u\left(k_{a}\right)\right]
\end{aligned}
$$

Fixed order expansion (full colour)

- Keep only terms up to NLL \& extend to full colour (at fixed order only) promote ($\left.\mathrm{N}_{\mathrm{c}}\right)^{\text {n }}$ to correct Casimirs

$$
\begin{aligned}
& \left.\Sigma(v) \simeq 1+\left(\frac{\alpha_{s}}{2 \pi}\right)\left(\mathcal{H}_{2}^{(1)}-4 C_{F} \int d k\right] w_{12}^{(0)}(k) \Theta_{\mathrm{in}}(k) \Theta(v(k)-v) \Theta\left(Q-k_{t}\right)+\mathcal{H}_{3}^{(1)} \otimes \mathbb{1}\right) \\
& -4 C_{F}\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} \int[d k] w_{12}^{(0)}(k) \Theta_{\mathrm{in}}(k) \Theta(v(k)-v) \Theta\left(k_{t}-Q\right)\left(K^{(1)}-4 \pi \beta_{0} \ln \frac{k_{t}}{Q}\right) \\
& +8 C_{F}^{2}\left(\frac{\alpha_{s}}{2 \pi}\right)^{2}\left(\int[d k] w_{12}^{(0)}(k) \Theta_{\text {in }}(k) \Theta(v(k)-v) \Theta\left(Q-k_{t}\right)\right)^{2} \\
& -8 C_{F}\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} \int\left[d k_{a}\right] \int\left[d k_{b}\right]\left[C_{A}\left(\bar{w}_{12}^{(g g)}\left(k_{a}, k_{b}\right)+\bar{w}_{12}^{(g g)}\left(k_{b}, k_{a}\right)\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \times \Theta\left(Q-k_{t(a b)}\right) \Theta\left(k_{t a}-k_{t b}\right)\left\{\Theta _ { \text { out } } (k _ { (a b) }) \left[\Theta_{\text {in }}\left(k_{a}\right) \Theta_{\text {out }}\left(k_{b}\right) \Theta\left(v\left(k_{a}\right)-v\right)\right.\right. \\
& \left.\left.+\Theta_{\text {out }}\left(k_{a}\right) \Theta_{\text {in }}\left(k_{b}\right) \Theta\left(v\left(k_{b}\right)-v\right)\right]-\Theta_{\text {in }}\left(k_{(a b)}\right) \Theta_{\text {out }}\left(k_{a}\right) \Theta_{\text {out }}\left(k_{b}\right) \Theta\left(v\left(k_{(a b)}\right)-v\right)\right\} \\
& -2\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} \int[d k] \Theta_{\text {in }}(k) \Theta(v(k)-v) \Theta\left(Q-k_{t}\right) \\
& \text { add subl. colour 3-jet dipole } \\
& \times\left[2 C_{F} \mathcal{H}_{2}^{(1)} w_{12}^{(0)}(k)+\mathcal{H}_{3}^{(1)} \otimes\left(C_{A}\left(w_{13}^{(0)}(k)+w_{32}^{(0)}(k)\right)+\left(2 C_{F}-C_{A}\right) w_{12}(k),\right] .\right.
\end{aligned}
$$

Hard factor with 3 legs at NLL: H_{3}

- Computed by matching the soft theory to full QCD
- Cancellation of collinear divergences between H_{2} and H_{3} (only combination is scheme indep.)
e.g. H_{3}

Hard factor with 3 legs at NLL: H_{3}

- Computed by matching the soft theory to full QCD
- Cancellation of collinear divergences between H_{2} and H_{3} (only combination is scheme indep.) e.g. H_{3}

Subtract counter-term (2-jet kinematics) with full ME, requiring all partons to be outside the slice. Thrust axis along the hardest parton

Hard factor with 3 legs at NLL: H_{3}

- Computed by matching the soft theory to full QCD
- Cancellation of collinear divergences between H_{2} and H_{3} (only combination is scheme indep.)
e.g. H_{3}

Subtract counter-term (2-jet kinematics) with full ME, requiring all partons to be outside the slice. Thrust axis along the hardest parton

Subtract soft counter-term, requiring the soft gluon to be outside the slice. Thrust axis along q (qbar) direction

- Mild dependence at low scales for fat cone jets, indicating sensitivity to non-perturbative corrections
- Impact is more moderate for narrower jets

