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๏  Jets and fiducial cuts, e.g. jet mass, rapidity 
cuts, isolation, Higgs ggF vs. VBF, …


๏  Accuracy of parton showers (PS): NLL non-
global logarithms ( ) critical for NNLL PS


๏  Insight into high-energy dynamics (BK/JIMWLK) 
via stereographic projection of evolution equation
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  Non-global logarithms are ubiquitous in collider physics

[Dasgupta, Dreyer, Hamilton, PM, Salam, Soyez ’20]

[Weigert ’03; Hatta ’08; Caron-Huot ’15]



๏  Resummation of LL ( ) corrections known for a long time and studied in depth


๏  Revived interest more recently and new formulations with modern QFT techniques 
 
 
 
 

๏  GOAL of this work ⇒ formulate a solution to the problem (in the planar limit) in a way that  
                                      can be applied to a variety of NG observables and processes

αn
s Ln

3

[Dasgupta, Salam ’01-’02; Banfi, Marchesini, Smye ’02; Forshaw et al. ’06-’09]

Full Nc (FSR) in: [Weigert ’03; Hatta, Ueda ’13-‘20 (+Hagiwara ’15)] 
(see M. Neubert’s talk for issues at hadron colliders)

[Becher, Neubert, Rothen, Shao ’15-’16 (+ Pecjak ’16, Rahn ’17, Balsiger ’18-’19, Ferroglia ’20);  
Larkoski, Moult, Neill ’15-’16; Caron-Huot ’16; Plaetzer, Ruffa ’20; Banfi, Dreyer, PM ’21; Becher, Rauh, Xu ’21]

  Non-global logarithms are ubiquitous in collider physics

Resummation of NLL corrections remains a great technical challenge  
due to the complexity of the geometry and colour structure 



๏  Consider the production of two cone jets at lepton colliders, with a veto on radiation in the interjet region
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  A simple example: cone-jet cross section with a veto

X
Veto

Apply a veto e.g. on  energy or transverse  
energy of the radiation in the gap.  

Need to calculate distribution of soft gluons  
on the sphere as a function of the veto scale



๏  Cumulative cross section receives contributions from hard configurations with different multiplicity
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LO evolution - -

NLO evolution LO
…

LL 

NLL

O(↵s)

O(↵2
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  Factorisation of the cross section

Integral over hard directions



The soft factors
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  Evolution of the soft factors: colour & planar limit
๏  Complexity growth of colour structure: full squared amplitude can be worked out in large-Nc


๏  Define Laplacian soft factors and their evolution equations with energy scale (e.g. dipole kt) 
 
 
                                      

⇒
[’t Hooft ’73]

Ti ·Tj ⇠ Nc �j,i±1e.g. O(αs) evolution (LL)

[Bassetto, Ciafaloni, Marchesini ’83; Fiorani, Marchesini, Reina ‘88]

Sn(v) = ∫
dν
2πi

eνvZ12…n[Q; u] ; Q∂QZ12[Q; u] = 𝕂[Z[Q, u], u] ; u = e−νv(k) = source

Z123 = Z12Z23 in planar limit
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๏  Evolution equations can be expressed conveniently in integral form


➡ At LL (one loop kernel) they reduce to the BMS equation (definition of Z12)

[Dasgupta, Salam ’01; Banfi, Marchesini, Smye ’01]

1 2

Sudakov: no-emission probability

(defined by unitarity Z12[Q;{u=1}] = 1, 


standard evolution of soft virtual squared amplitudes)

Symmetries of squared amplitude allow for 
an iterative reconstruction (strongly) 

 ordered in dipole kt

  Evolution of the soft factors: integral equations and geometry
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two unordered real gluons  
(planar limit of double soft squared gauge current)

…

…

subtraction of iteration of LL kernel

(no double counting)

  Integral evolution equations: NLL (two loop kernel)
[Banfi, Dreyer, PM ’21]
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two unordered real gluons  
(planar limit of double soft squared gauge current)

…

…

subtraction of iteration of LL kernel

(no double counting)

+  integrated counter-terms

 - local counter-term

  Integral evolution equations: NLL (two loop kernel)

Introduce IRC counter-term to make each 
term manifestly finite in 4 dimensions

[Banfi, Dreyer, PM ’21]
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  Integral evolution equations: new structures at NLL
[Banfi, Dreyer, PM ’21]

New structure of double real radiation  
(1⇾2 dipole branching)


Hard to iterate with Monte Carlo methods

⊃ Z12 → Z1i Zi2 ⊃ Z12 → Z1i Zij Zj2

Same structure as in LL kernel  
(1⇾2 dipole branching)


Easy to iterate with Monte Carlo methods 

[Full kernels in backup slides]



The hard factors
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๏  Computed by matching the soft theory to full QCD


๏  Cancellation of collinear divergences between H2 and H3 (only combination is scheme independent)
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Recall:

! soft

1

e.g. H3

  Hard factor with 3 legs at NLL: H3

⇒

Remaining collinear singularity subtracted 

with standard methods, here a generalisation  

at all-orders of Projection-to-Born  
(integrated counter-term to be added back to H2)

[Banfi, Dreyer, PM ’21]

All particles required to be 
outside the interjet gap 



๏  Computed by matching the soft theory to full QCD


๏  Cancellation of collinear divergences between H2 and H3 (only combination is scheme independent)
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Recall:

1

  Hard factor with 2 legs at NLL: H2

!
e.g. H2:

+      integrated counterterms from H3

soft

➥ 

c ≡ cos(θjet)

[Banfi, Dreyer, PM ’21]



Perturbative solution & results
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⊃ Z12 → Z1i Zi2 ⊃ Z12 → Z1i Zij Zj2



๏  Recast evolution equations in terms of generating functionals (⇾ calculation of probabilities ⇾ Monte Carlo) 
 
 

๏  Cross section becomes:
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p1

p3

p2

Nc
� 1

  Generating functionals

see e.g. [Konishi, Ukawa, Veneziano ’79; Dokshitzer, Khoze, Mueller, Troyan ’91]

dPn = ℵ(n)
n

∏
i=1

[dki]
δ

δu(ki)
Z12[Q; {u}]

{u}=0

,
δ

δu(ki)
u(k) ≡ δ̄(k − ki)



๏  All-order solution can be formulated in a perturbative form, i.e.


๏  Linearise evolution equation in Z(1) by neglecting (Z(1))2 corrections (NNLL and higher)
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Z(0)
12 [Q; {u}] = KRV+VV

int [Z(0)[Q;u], u]with

  Perturbative solution of the NLL evolution equation

All-order iteration of Z(0) and a single 
insertion of Z(1) at any scale in the evolution 

graph (truncated shower).

Structure emerges from the ev. eqn.

[Banfi, Dreyer, PM ’21]



๏ O(αS2) expansion expected to reproduce the logarithmic structure of QCD 

expect

Fixed order from EVENT2

☑☑

For energy, agreement with 

[Becher, Neubert, Rothen, Shao ’16][Catani, Seymour ’96]

17

  Fixed order checks

OK for different  
jet-cone sizes
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NLL corrections sizeable (up to ~40%), significant  
(~50%) reduction of perturbative uncertainty
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  All order results at NLL: narrow cone jets
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Contribution from  Z(1)  
subdominant: perturbative 

treatment fully justified
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  All order results at NLL: fat cone jets
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๏ Formalism for calculation of non-global corrections at NLL in the planar limit:


➡ Soft evolution solvable in terms of colour dipoles with Monte Carlo methods


➡ NLL resummation for final-state radiation in e+e- (veto in interjet rapidity gap). NLL 
corrections are substantial (up to ~40%), with a considerable reduction of TH errors (~50%) 
 


๏ Next steps:


➡ Self-similar iteration of Z(1) (formally sub-leading), connection between orderings and RGE


➡ Application to pp collisions (process dependence encoded in hard factors; complications 
arise at sub-leading Nc, e.g. SLL)


➡ MC algorithm closely related to a parton shower: important insight on NNLL PS structure

20

see Matthias Neubert’s talk

  Conclusions & Outlook



Extra material
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๏ Stereographic projection relates NGL 
evolution equation (BMS) to saturation 
dynamics in high-energy forward 
scattering (BK/JIMWLK) at all orders

[Weigert ’03; Hatta ’08; Caron-Huot ’15]

22

Non-global logarithms & BFLK

i.e. distribution of small-x gluons in 
the transverse plane is equivalent 

to angular distribution of soft 
gluons on the sphere at infinity
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Second-order (planar) corrections to evolution kernel

Same structure as LL kernel  
(1→2 dipole branching) 

Easy to iterate in a MCMC

Squared amplitudes from [Catani, Grazzini ’00]

also [Angeles Martinez, Forshaw, Seymour ’16]

two-loop cusp anomalous dimension
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Second-order (planar) corrections to evolution kernel

New structure of real radiation 
(1→3 dipole branching) 

Hard to iterate in a MCMC

 collinear counter-term defined on a 
projected pseudo-parent momentum

Squared amplitudes from [Campbell, Glover ’97]

also [Gehrmann-De Ridder, Gehrmann, Glover ’05]
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Second-order (planar) corrections to evolution kernel
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Perturbative insertion of double-real corrections
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Fixed order expansion (full colour)
๏ Keep only terms up to NLL & extend to full colour (at fixed order only)

promote (Nc)n to correct Casimirs

add double soft fermionic current

add subl. colour 3-jet dipole



  Hard factor with 3 legs at NLL: H3

๏  Computed by matching the soft theory to full QCD


๏  Cancellation of collinear divergences between H2 and H3 (only combination is scheme indep.)
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๏  Computed by matching the soft theory to full QCD
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28

e.g. H3

! soft

Subtract counter-term (2-jet kinematics) 
with full ME, requiring all partons to be 

outside the slice. Thrust axis  
along the hardest parton

Subtract soft counter-term, requiring the 
soft gluon to be outside the slice. Thrust 

axis along q (qbar) direction
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Dependence on infrared freezing scale Q0
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๏  Mild dependence at low scales for fat cone jets, indicating sensitivity to non-perturbative corrections


๏  Impact is more moderate for narrower jets


