Factorization for Subleading Power TMD Observables

Anjie Gao

arXiv: 2112.07680 with Markus Ebert, lain Stewart

+ ongoing work
SCET 2022, University of Bern

Intro to Semi-Inclusive DIS: $e^{-} p \rightarrow e^{-} h X$

- Decomposition according to different polarization contributions

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma}{\mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \mathrm{~d}^{2} \vec{P}_{h T}}=\frac{\pi \alpha^{2}}{2 Q^{4}} \frac{y}{z} L_{\mu \nu}\left(p_{\ell}, p_{\ell^{\prime}}\right) W^{\mu \nu}\left(q, P_{N}, P_{h}\right) \\
& \sim(L \cdot W)_{U U}+\lambda_{\ell}(L \cdot W)_{L U}+S_{L}\left[(L \cdot W)_{U L}+\lambda_{\ell}(L \cdot W)_{L L}\right]+S_{T}\left[(L \cdot W)_{U T}+\lambda_{\ell}(L \cdot W)_{L T}\right] \\
& \quad L^{\mu \nu}=\langle\ell| J_{\overline{\ell \ell}}^{\dagger \mu}\left|\ell^{\prime}\right\rangle\left\langle\ell^{\prime}\right| J_{\overline{\ell \ell}}^{\nu}|\ell\rangle=2\left[\left(p_{\ell}^{\mu} p_{\ell^{\prime}}^{\nu}+p_{\ell}^{\nu} p_{\ell^{\prime}}^{\mu}-p_{\ell} \cdot p_{\ell^{\prime}} g^{\mu \nu}\right)+\mathrm{i} \lambda_{\ell} \epsilon^{\mu \nu \rho \sigma} p_{\ell \rho} p_{\ell^{\prime} \sigma}\right] \\
& \quad W^{\mu \nu}\left(q, P_{N}, P_{h}\right)=\sum_{X} \int \frac{\mathrm{~d}^{4} b}{(2 \pi)^{4}} e^{\mathrm{i} b \cdot q}\langle N| J^{\dagger \mu}(b)|h, X\rangle\langle h, X| J^{\nu}(0)|N\rangle \\
& \quad=W_{U}^{\mu \nu}+S_{L} W_{L}^{\mu \nu}+S_{T} \cos \left(\phi_{h}-\phi_{S}\right) W_{T \tilde{x}}^{\mu \nu}+S_{T} \sin \left(\phi_{h}-\phi_{S}\right) W_{T \tilde{y}}^{\mu \nu}
\end{aligned}
$$

- TMD region: $P_{h T} \ll Q$

Tensor Decomposition for (Unporlarized) Inclusive DIS

- Summing over final states

$$
\begin{aligned}
W^{\mu \nu}\left(q, P_{N}\right) & =\sum_{X} \int \frac{\mathrm{~d}^{4} b}{(2 \pi)^{4}} e^{\mathrm{i} b \cdot q}\langle N| J^{\dagger \mu}(b)|X\rangle\langle X| J^{\nu}(0)|N\rangle \\
& =\int \frac{\mathrm{d}^{4} b}{(2 \pi)^{4}} e^{\mathrm{i} b \cdot q}\langle N| J^{\dagger \mu}(b) J^{\nu}(0)|N\rangle
\end{aligned}
$$

- $q_{\mu} W^{\mu \nu}=0, W^{\mu \nu}=W^{\nu \mu}$, dependence on only two vectors q^{μ} and P_{N}^{μ}
\Rightarrow Two structure functions

$$
W^{\mu \nu}\left(q, P_{N}\right)=W_{1}\left(-g^{\mu \nu}+\frac{q^{\mu} q^{\nu}}{q^{2}}\right)+W_{2}\left(P_{N}^{\mu}-\frac{P_{N} \cdot q}{q^{2}} q^{\mu}\right)\left(P_{N}^{\nu}-\frac{P_{N} \cdot q}{q^{2}} q^{\nu}\right)
$$

Tensor Decomposition for SIDIS

- Projection
$(L \cdot W)_{\diamond \Theta}=\sum_{i=-1}^{7}\left(P_{i}^{-1} \cdot L\right)_{\diamond}\left(P_{i} \cdot W\right)_{\diamond}$
- Projectors defined in the hadronic Breit frame
 $P_{-1}^{\mu \nu}=\left(\tilde{x}^{\mu} \tilde{x}^{\nu}+\tilde{y}^{\mu} \tilde{y}^{\nu}\right), P_{0}^{\mu \nu}=\tilde{t}^{\mu} \tilde{t}^{\nu}, P_{1}^{\mu \nu}=-\left(\tilde{t}^{\mu} \tilde{x}^{\nu}+\tilde{x}^{\mu} \tilde{t}^{\nu}\right), \ldots, P_{7}^{\mu \nu}$
- $q \cdot L=q \cdot W=0 \Rightarrow$ no $\tilde{z} \Rightarrow 3 \times 3=9$ projectors
- Parity and hermiticity constraints reduce \# of structure functions
\Rightarrow In total 18 structure functions [Bacchetta et al '06]
$(L \cdot W)_{U U}=W_{U U, T}+\epsilon W_{U U, L}+\sqrt{2 \epsilon(1+\epsilon)} \cos \left(\phi_{h}\right) W_{U U}^{\cos \left(\phi_{h}\right)}+\epsilon \cos \left(2 \phi_{h}\right) W_{U U}^{\cos \left(2 \phi_{h}\right)}$,
$(L \cdot W)_{L U}=\sqrt{2 \epsilon(1-\epsilon)} \sin \left(\phi_{h}\right) W_{L U}^{\sin \left(\phi_{h}\right)}$,
$(L \cdot W)_{L T}=\sqrt{1-\epsilon^{2}} \cos \left(\phi_{h}-\phi_{S}\right) W_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)}$

$$
+\sqrt{2 \epsilon(1-\epsilon)}\left[\cos \left(\phi_{S}\right) W_{L T}^{\cos \left(\phi_{S}\right)}+\cos \left(2 \phi_{h}-\phi_{S}\right) W_{L T}^{\cos \left(2 \phi_{h}-\phi_{S}\right)}\right]
$$

- $W_{L U}^{\sin \left(\phi_{h}\right)}, W_{L T}^{\cos \left(\phi_{S}\right)}, W_{L T}^{\cos \left(2 \phi_{h}-\phi_{S}\right)}, \ldots: \mathcal{O}(\lambda) S C E T_{\text {II }}$ observables

Summary of what I presented last year at SCET

- Match QCD onto SCET II $: J=J^{(0)}+\sum_{k} J_{k}^{(1)}+\ldots$
- $J^{(0) \mu} \sim\left(\gamma_{\perp}^{\mu}\right)^{\alpha \beta} C_{f}^{(0)}(Q) \bar{\chi}_{\bar{n}, \omega_{b}}^{\alpha}\left[S_{n}^{\dagger} S_{n}\right] \chi_{n, \omega_{a}}^{\beta} \quad \Rightarrow \quad W^{(0) \mu \nu} \sim \mathcal{H}^{(0)} \operatorname{Tr}\left[B \gamma_{\perp}^{\mu} \mathcal{G} \gamma_{\perp}^{\nu}\right]$ where $B\left(b_{\perp}\right) \sim\langle N| \bar{\chi}_{n}\left(b_{\perp}\right) \chi_{n}(0)|N\rangle \sqrt{S}, \mathcal{G}\left(b_{\perp}\right) \sim\langle 0| \chi_{\bar{n}}\left(b_{\perp}\right)|h, X\rangle\langle h, X| \bar{\chi}_{\bar{n}}(0)|0\rangle \sqrt{S}$, $S\left(b_{T}\right)=\frac{1}{N_{c}} \operatorname{tr}\langle 0|\left[S_{n}^{\dagger}\left(b_{\perp}\right) S_{\bar{n}}\left(b_{\perp}\right)\right]\left[S_{\bar{n}}^{\dagger}(0) S_{n}(0)\right]|0\rangle$
- Next-to-leading power collinear operators (ξ : energy fraction of $\mathcal{B}_{n_{i} \perp}$)
$J_{\mathcal{P}}^{(1) \mu} \sim \frac{C_{f}^{(0)}}{2 \omega_{a}} \bar{\chi}_{\bar{n}, \omega_{b}}\left[S_{n}^{\dagger} S_{n}\right] \gamma^{\mu} \mathbb{P}_{\perp}{ }^{\boldsymbol{\hbar}} \chi_{n, \omega_{a}}+$ h.c.
$J_{\mathcal{B}}^{(1) \mu} \sim C_{f}^{(1)}(Q, \xi)\left(n^{\mu}+\bar{n}^{\mu}\right)\left[\bar{\chi}_{\bar{n}, \omega_{b}}\left[S_{\bar{n}}^{\dagger} S_{n}\right] \mathcal{B}_{\perp n,-\omega_{c}} \chi_{n, \omega_{a}}+\bar{\chi}_{\bar{n}, \omega_{b}} \mathcal{B}_{\perp \bar{n}, \omega_{c}}\left[S_{\bar{n}}^{\dagger} S_{n}\right] \chi_{n, \omega_{a}}\right]$
$\Rightarrow W^{(1) \mu \nu} \sim \mathcal{H}^{(0)} \operatorname{Tr}\left[B \gamma^{\mu} \mathcal{G}_{\mathcal{P}} \gamma^{\nu}+B_{\mathcal{P}} \gamma^{\mu} \mathcal{G} \gamma^{\nu}\right]+\int \mathrm{d} \xi \mathcal{H}^{(1)} \operatorname{Tr}\left[B \gamma^{\mu} \tilde{\mathcal{G}}_{\mathcal{B}} \gamma^{\nu}+\tilde{B}_{\mathcal{B}} \gamma^{\mu} \mathcal{G} \gamma^{\nu}\right]$ where $\tilde{B}_{\mathcal{B}}\left(b_{\perp}, \xi\right) \sim\langle N| \bar{\chi}_{n} \mathcal{B}_{n \perp} \chi_{n}|N\rangle \sqrt{S}, \tilde{\mathcal{G}}\left(b_{\perp}, \xi\right) \sim\langle 0| \chi_{\bar{n}}|h, X\rangle\langle h, X| \mathcal{B}_{\bar{n} \perp} \bar{\chi}_{\bar{n}}|0\rangle \sqrt{S}$,

$$
B_{\mathcal{P}} \sim \partial_{\perp} B, \mathcal{G}_{\mathcal{P}} \sim \partial_{\perp} \mathcal{G},
$$

- \triangleright Same soft function and rapidity anomalous dim
\triangleright Two hard functions for all NLP structure functions, $\mathcal{H}^{(0)}(Q), \mathcal{H}^{(1)}(Q, \xi)$
$\triangleright \xi$ dependence/integral

Summary of what I presented last year at SCET

- Contracting $W^{\mu \nu}$ with $P^{\mu \nu}$, we get the factorization formulae for structure functions with full spin dependence
- For example

$$
\begin{aligned}
W_{U T}^{\sin \phi_{S}}=\mathcal{F} & \left\{-\frac{q_{T}}{2 Q} \mathcal{H}^{(0)}\left(\frac{k_{T x}}{M_{N}} f_{1 T}^{\perp} D_{1}-\frac{2 p_{T x}}{M_{h}} h_{1} H_{1}^{\perp}\right)\right. \text { (Kinematic corrections) } \\
& +\mathcal{H}^{(0)}\left(-\frac{k_{T}^{2}+\vec{k}_{T} \cdot \vec{p}_{T}}{2 M_{N} Q} f_{1 T}^{\perp} D_{1}+\frac{p_{T}^{2}+\vec{k}_{T} \cdot \vec{p}_{T}}{M_{h} Q} h_{1} H_{1}^{\perp}\right.
\end{aligned}
$$

(From the \mathcal{P}_{\perp} operators)
$+\mathcal{H}^{(1)}\left[\frac{x M_{N}}{Q}\left(2 \tilde{f}_{T} D_{1}-\frac{\vec{k}_{T} \cdot \vec{p}_{T}}{M_{N} M_{h}}\left(\tilde{h}_{T}-\tilde{h}_{T}^{\perp}\right) H_{1}^{\perp}\right)\right.$

$$
\left.\left.-\frac{M_{h}}{z Q}\left(2 h_{1} \tilde{H}+\frac{\vec{k}_{T} \cdot \vec{p}_{T}}{M_{N} M_{h}}\left(g_{1 T} \tilde{G}^{\perp}+f_{1 T}^{\perp} \tilde{D}^{\perp}\right)\right)\right]\right\}
$$

$\mathcal{F}[\omega \mathcal{H} g D]=2 z \sum_{f} \int \mathrm{~d}^{2} p_{T} \mathrm{~d}^{2} k_{T} \delta^{2}\left(\vec{q}_{T}+\vec{p}_{T}-\vec{k}_{T}\right) \omega\left(\vec{p}_{T}, \vec{k}_{T}\right)$

$$
\times \int \mathrm{d} \xi \mathcal{H}_{f}(Q,(\xi)) g_{f}\left(x,(\xi), p_{T}\right) D_{f}\left(z,(\xi), k_{T}\right)
$$

- $f_{\tilde{1 T}}^{\perp}, h_{1} \in B, \quad D_{\tilde{\sim}_{1}}, H_{\tilde{H}^{\perp}}^{\perp} \in \underset{\sim}{\mathcal{D}}$ $\tilde{f}_{T}, \tilde{h}_{T}, \tilde{h}_{T}^{\perp} \in \tilde{B}_{\mathcal{B}}, \quad \tilde{H}, \tilde{G}^{\perp}, \tilde{D}^{\perp} \in \tilde{\mathcal{G}}_{\mathcal{B}}$

New for this talk

- Construction of NLP SCET ${ }_{\text {II }}$ soft currents
- Vanishing of all the subleading soft contributions
- Extension to Drell-Yan and $e^{+} e^{-} \rightarrow$ dihadron

We still assume the leading power Glauber contributions do not spoil factorization at NLP for SIDIS, which needs to be confirmed explicitly in the future

Constructing SCET $_{\text {II }}$ to Subleading Power

- Match SCET ${ }_{I}$ onto SCET $_{\text {II }}$

SCET $T_{\text {I }}$

$$
\xrightarrow{\substack{p_{n}^{2} \rightarrow \eta^{4} Q^{2} \\ x=\eta^{2}}} \quad \text { SCET II (for } T M D_{S} \text {) }
$$

- $\operatorname{SCET}_{\mathrm{I}}$ at $\mathcal{O}\left(\eta^{k}\right) \Longrightarrow \operatorname{SCET}_{\mathrm{II}}$ at $\mathcal{O}\left(\lambda^{k / 2+E}\right)$ with $E \geq 0$.

$$
\begin{aligned}
\mathcal{L}_{\mathrm{dyn}} & =\mathcal{L}_{\mathrm{dyn}}^{(0)}+\mathcal{L}_{\mathrm{dyn}}^{(1 / 2)}+\mathcal{L}_{\mathrm{dyn}}^{(1)}+\ldots \\
\mathcal{L}_{\mathrm{h}} & =\mathcal{L}_{\mathrm{h}}^{(0)}+\mathcal{L}_{\mathrm{h}}^{(1)}+\mathcal{L}_{\mathrm{h}}^{(2)}+\ldots \\
\mathcal{L}_{\mathrm{hc}} & =\mathcal{L}_{\mathrm{hc}}^{(0)}+\mathcal{L}_{\mathrm{hc}}^{(1 / 2)}+\mathcal{L}_{\mathrm{hc}}^{(1)}+\ldots
\end{aligned}
$$

Hard Operators in SCET II

- Leading power current $J^{(0) \mu} \sim \sum_{f}\left(\gamma_{\perp}^{\mu}\right)^{\alpha \beta} C_{f}^{(0)}(Q) \bar{\chi}_{\bar{n}, \omega_{b}}^{\alpha}\left[S_{n}^{\dagger} S_{n}\right] \chi_{n, \omega_{a}}^{\beta}$
- In general, operators are constructed using "building blocks" \triangleright Collinear quark and gluon $\chi_{n}, \mathcal{B}_{n \perp}^{\mu}=\frac{1}{g}\left[W_{n}^{\dagger}(x) \mathrm{i} D_{n \perp}^{\mu} W_{n}(x)\right] \sim \lambda$
\triangleright Soft quark and gluon $\psi_{s(n)} \sim \lambda^{3 / 2}, \mathcal{B}_{s(n)}^{\mu} \sim \lambda$
\triangleright Momentum operators $\mathcal{P}_{\perp}, n \cdot \partial_{s}, \bar{n} \cdot \partial_{s} \sim \lambda$
- Operators get generated from two offshell scales
\triangleright Hard (tree-level and beyond) \mathcal{L}_{h}

\triangleright Hard-collinear (one-loop and beyond for $\mathcal{O}(\lambda)$)

$$
T\left[J_{\mathrm{I}}^{(0) \mu} \mathcal{L}_{\mathrm{I}}^{(1)}\right], T\left[J_{\mathrm{I}}^{(0) \mu} \mathcal{L}_{\mathrm{I}}^{(2)}\right], T\left[J_{\mathrm{I}}^{(0) \mu} \mathcal{L}_{\mathrm{I}}^{(1)} \mathcal{L}_{\mathrm{I}}^{(1)}\right], T\left[J_{\mathrm{I}}^{(1) \mu} \mathcal{L}_{\mathrm{I}}^{(1)}\right] \text { in } \mathrm{SCET}_{\mathrm{I}}
$$

\rightarrow hard scattering operators in SCET $_{\text {II }}: \mathcal{L}_{\text {hc }}$

Category of NLP

- Kinematic power corrections
- Hard scattering power corrections from the hard region through $\mathcal{L}_{\mathrm{h}}^{(1)}$
- Hard scattering power corrections from the hard-collinear region through $\mathcal{L}_{\mathrm{hc}}^{(1)}$ and $T\left[\mathcal{L}_{\mathrm{hc}}^{(1 / 2)} \mathcal{L}_{\text {dyn }}^{(1 / 2)}\right]$
- Subleading dynamic Lagrangian insertions:
$T\left[\mathcal{L}_{\text {hard }}^{(0)} \mathcal{L}_{\text {dyn }}^{(1 / 2)} \mathcal{L}_{\text {dyn }}^{(1 / 2)}\right], T\left[\mathcal{L}_{\text {hard }}^{(0)} \mathcal{L}_{\text {dyn }}^{(1)}\right]$

Subleading Insertion involving $J^{(0)}$

- SCET $_{\text {II }}$ Subleading Lagrangian insertions

$$
\begin{aligned}
W_{\mathcal{L}}^{(1) \mu \nu} \sim & \langle N| J^{(0) \dagger \mu}(b)|h, X\rangle\langle h, X| \int \mathrm{d}^{4} x \mathrm{~d}^{4} y T\left[J^{(0) \nu}(0) \mathcal{L}^{(1 / 2)}(x) \mathcal{L}^{(1 / 2)}(y)\right]|N\rangle \\
& +\langle N| J^{(0) \dagger \mu}(b)|h, X\rangle\langle h, X| \int \mathrm{d}^{4} x T\left[J^{(0) \nu}(0) \mathcal{L}^{(1)}(x)\right]|N\rangle+\ldots
\end{aligned}
$$

Since μ, ν are transverse $\left(J^{(0) \mu} \sim\left(\gamma_{\perp}^{\mu}\right)^{\alpha \beta} C_{f}^{(0)}(Q) \bar{\chi}_{\bar{n}, \omega_{b}}^{\alpha}\left[S_{n}^{\dagger} S_{n}\right] \chi_{n, \omega_{a}}^{\beta}\right)$, when contracting with $P_{1}^{\mu \nu}=-\left(\tilde{t}^{\mu} \tilde{x}^{\nu}+\tilde{x}^{\mu} \tilde{t}^{\nu}\right), P_{2}^{\mu \nu}=\mathrm{i}\left(\tilde{t}^{\mu} \tilde{x}^{\nu}-\tilde{x}^{\mu} \tilde{t}^{\nu}\right), \ldots$ such contributions vanish

- $T\left[J_{\mathrm{I}}^{(0) \mu} \mathcal{L}_{\mathrm{I}}^{(1)}\right], T\left[J_{\mathrm{I}}^{(0) \mu} \mathcal{L}_{\mathrm{I}}^{(2)}\right], T\left[J_{\mathrm{I}}^{(0) \mu} \mathcal{L}_{\mathrm{I}}^{(1)} \mathcal{L}_{\mathrm{I}}^{(1)}\right]$ in $\mathrm{SCET}_{\mathrm{I}}$
\rightarrow hard scattering operators in $\operatorname{SCET}_{\text {II }}\left(\mathcal{L}_{\mathrm{hc}}^{(1 / 2)}, \mathcal{L}_{\mathrm{hc}}^{(1)}\right)$
Vanish since μ, ν in $J^{(0)}$ are (again) transverse

Operators involving a $n \cdot \partial_{s}, \bar{n} \cdot \partial_{s}, \bar{n} \cdot \mathcal{B}_{s}^{(n)}$, or $n \cdot \mathcal{B}_{s}^{(\bar{n})}$

- RPI constraints contributions of $n \cdot \partial_{s}, \bar{n} \cdot \partial_{s}, \bar{n} \cdot \mathcal{B}_{s}^{(n)}$, or $n \cdot \mathcal{B}_{s}^{(\bar{n})}$ operators to in $\cdot \partial_{s}\left(S_{n}^{\dagger} S_{\bar{n}}\right)\left(b_{s}^{+}\right)$and $i \bar{n} \cdot \partial_{s}\left(S_{n}^{\dagger} S_{\bar{n}}\right)\left(b_{s}^{-}\right)$
- Leads to derivative of generalized soft function $\left.\frac{\partial}{\partial b_{s}^{\mp}} S\left(b_{T}, b_{s}^{+} b_{s}^{-}\right)\right|_{b_{s}^{ \pm} \rightarrow 0}$
- It scales linear in \bar{n} or n under RPI-III ($n \rightarrow e^{\alpha} n, \bar{n} \rightarrow e^{-\alpha} \bar{n}$) of SCET, thus vanishes (remains true with rapidity regulators)

Operator Involving \mathcal{B}_{s}^{\perp}

- Hard and hard-collinear contributions

$$
\begin{aligned}
J_{\mathcal{B}_{s}^{\perp}}^{(1) \mu}(0)= & J_{h \mathcal{B}_{s}^{\perp}}^{(1) \mu}(0)+J_{\mathrm{hc}}^{(1) \mu} \mathcal{B}_{s}^{\perp} \\
= & \sum_{n_{1}} \int \mathrm{~d} \omega_{1} \mathrm{~d} \omega_{2} \sum_{f} \frac{\tilde{p}_{2}^{\mu}-\tilde{p}_{1}^{\mu}}{\tilde{q}^{2}} \int \mathrm{~d} \hat{b}_{s} C_{\mathcal{B}_{s}^{\perp}}^{(1)}\left(\tilde{q}^{2}, \hat{b}_{s}\right) \\
& \times \bar{\chi}_{\bar{n}_{1},-\omega_{2}}\left\{\left[S_{\bar{n}_{1}}^{\dagger} S_{n_{1} g \not \mathbb{B}_{s \perp}^{\left(n_{1}\right)}}^{\left(n_{1}\right.}\right]\left(\omega_{1} \hat{b}_{s}\right)+\left[g \mathbb{B}_{s \perp}^{\left(\bar{n}_{1}\right)} S_{\bar{n}_{1}}^{\dagger} S_{n_{1}}\right]\left(\omega_{2} \hat{b}_{s}\right)\right\} \chi_{n_{1},-\omega_{1}}, \\
& C_{\mathcal{B}_{\frac{\perp}{s}}^{(1)}\left(\tilde{q}^{2}, \hat{b}_{s}\right)=\frac{1}{2} C^{(0)}\left(\tilde{q}^{2}\right) \delta\left(\hat{b}_{s}\right)+\int \mathrm{d} \xi C^{(1)}\left(\tilde{q}^{2}, \xi\right) \tilde{J}_{\mathcal{B}_{s}^{\perp}}\left(\hat{b}_{s}, \xi\right) .} .
\end{aligned}
$$

- $T\left[J_{\mathrm{I}}^{(1) \mu} \mathcal{L}_{\mathrm{I}}^{(1)}\right]$ in SCET $_{\mathrm{I}} \rightarrow$ hard scattering operators in SCET II in $\mathcal{L}_{\mathrm{hc}}$

Operator Involving \mathcal{B}_{s}^{\perp}

$$
\begin{aligned}
& W_{\mathcal{B}_{s}^{+}}^{(1) \mu \nu}=-\frac{4 z}{Q} \sum_{f} \int \frac{\mathrm{~d}^{2} b_{T}}{(2 \pi)^{2}} e^{-\mathrm{i} \vec{q}_{T} \cdot \vec{b}_{T}} \int \mathrm{~d} \hat{b}_{s} C_{\mathcal{B}_{s}^{\prime}}^{(1)}\left(\tilde{q}^{2}, \hat{b}_{s}\right) C^{(0)}\left(\tilde{q}^{2}\right) \\
& \times\left\{\left(n^{\nu}+\bar{n}^{\nu}\right) \operatorname{Tr}\left[\hat{B}_{f / N}\left(x, \vec{b}_{T}\right) \gamma_{\perp}^{\mu} \hat{\mathcal{G}}_{h / f}\left(z, \vec{b}_{T}\right) \gamma_{\perp \rho}\right] \hat{\mathcal{S}}_{1}^{\rho}\left(b_{\perp}, Q \hat{b}_{s}, Q \hat{b}_{s}\right)\right. \\
&\left.+\left(n^{\mu}+\bar{n}^{\mu}\right) \operatorname{Tr}\left[\hat{B}_{f / N}\left(x, \vec{b}_{T}\right) \gamma_{\perp \rho} \hat{\mathcal{G}}_{h / f}\left(z, \vec{b}_{T}\right) \gamma_{\perp}^{\nu}\right] \hat{\mathcal{S}}_{2}^{\rho}\left(b_{\perp}, Q \hat{b}_{s}, Q \hat{b}_{s}\right)\right\} . \\
& \hat{\mathcal{S}}_{1}^{\rho}\left(b_{\perp}, b_{s}^{+}, b_{s}^{-}\right) \equiv \frac{1}{N_{c}} \operatorname{tr}\langle 0|\left[S_{n}^{\dagger}\left(b_{\perp}\right) S_{\bar{n}}\left(b_{\perp}\right)\right]\left[S_{\bar{n}}^{\dagger}\left(b_{s}^{-}\right) S_{n}\left(b_{s}^{-}\right) g \mathcal{B}_{s \perp}^{(n) \rho}\left(b_{s}^{-}\right)\right]|0\rangle \\
& \quad+\frac{1}{N_{c}} \operatorname{tr}\langle 0|\left[S_{n}^{\dagger}\left(b_{\perp}\right) S_{\bar{n}}\left(b_{\perp}\right)\right]\left[g \mathcal{B}_{s \perp}^{(\bar{n}) \rho}\left(b_{s}^{+}\right) S_{\bar{n}}^{\dagger}\left(b_{s}^{+}\right) S_{n}\left(b_{s}^{+}\right)\right]|0\rangle, \\
& \hat{\mathcal{S}}_{2}^{\rho}\left(b_{\perp}, b_{s}^{+}, b_{s}^{-}\right) \equiv \frac{1}{N_{c}} \operatorname{tr}\langle 0|\left[g \mathcal{B}_{s \perp \rho}^{(n) \rho}\left(b_{\perp}, b_{s}^{-}\right) S_{n}^{\dagger}\left(b_{\perp}, b_{s}^{-}\right) S_{\bar{n}}\left(b_{\perp}, b_{s}^{-}\right)\right]\left[S_{n}^{\dagger}(0) S_{n}(0)\right]|0\rangle \\
& \quad \frac{1}{N_{c}} \operatorname{tr}\langle 0|\left[S_{n}^{\dagger}\left(b_{\perp}, b_{s}^{+}\right) S_{\bar{n}}\left(b_{\perp}, b_{s}^{+}\right) g \mathcal{B}_{s \perp}^{(\bar{n}) \rho}\left(b_{\perp}, b_{s}^{+}\right)\right]\left[S_{\bar{n}}^{\dagger}(0) S_{n}(0)\right]|0\rangle .
\end{aligned}
$$

Vanishing of $\hat{S}_{i}^{\rho}(b)$ due to Parity and Charge Conjugation

$$
\begin{aligned}
& \hat{\mathcal{S}}_{1}^{\rho}\left(b_{\perp}\right) \equiv \frac{1}{N_{c}} \operatorname{tr}\langle 0|\left[S_{n}^{\dagger} S_{\bar{n}}\right]\left(b_{\perp}\right)\left[S_{\bar{n}}^{\dagger} S_{n} g \mathcal{B}_{s \perp}^{(n) \rho}+g \mathcal{B}_{s \perp}^{(\bar{n}) \rho} S_{\bar{n}}^{\dagger} S_{n}\right](0)|0\rangle, \\
& \hat{\mathcal{S}}_{2}^{\rho}\left(b_{\perp}\right) \equiv \frac{1}{N_{c}} \operatorname{tr}\langle 0|\left[g \mathcal{B}_{s \perp}^{(n) \rho} S_{n}^{\dagger} S_{\bar{n}}+S_{n}^{\dagger} S_{\bar{n}} g \mathcal{B}_{s \perp}^{(\bar{n}) \rho}\right]\left(b_{\perp}\right)\left[S_{n}^{\dagger} S_{n}\right](0)|0\rangle
\end{aligned}
$$

(For simplicity, here I show the vanishing of \hat{S}_{i}^{ρ} for $b=b_{\perp}$. The story for general b is similar.)

- Under parity,
\triangleright Sign flip associated to the ρ
$\triangleright n \leftrightarrow \bar{n}$
$\triangleright b_{\perp} \rightarrow-b_{\perp}$
- Using parity invariance of the vacuum,

$$
\begin{aligned}
& \hat{\mathcal{S}}_{1}^{\rho}\left(b_{\perp}\right) \\
& =\frac{-1}{N_{c}} \operatorname{tr}\langle 0|\left[S_{\bar{n}}^{\dagger} S_{n}\right]\left(-b_{\perp}\right)\left[S_{n}^{\dagger} S_{\bar{n}} g \mathcal{B}_{s \perp}^{(\bar{n}) \rho}+g \mathcal{B}_{s \perp}^{(n) \rho} S_{n}^{\dagger} S_{\bar{n}}\right](0)|0\rangle \\
& =\frac{-1}{N_{c}} \operatorname{tr}\langle 0|\left[S_{n}^{\dagger} S_{\bar{n}} g \mathcal{B}_{s \perp}^{(\bar{n}) \rho}+g \mathcal{B}_{s \perp}^{(n) \rho} S_{n}^{\dagger} S_{\bar{n}}\right]\left(b_{\perp}\right)\left[S_{\bar{n}}^{\dagger} S_{n}\right](0)|0\rangle \\
& =-\hat{\mathcal{S}}_{2}^{\rho}\left(b_{\perp}\right) .
\end{aligned}
$$

Vanishing of $\hat{S}_{i}^{\rho}(b)$ due to Parity and Charge Conjugation

$$
\begin{aligned}
\hat{\mathcal{S}}_{1}^{\rho}\left(b_{\perp}\right) & \equiv \frac{1}{N_{c}} \operatorname{tr}\langle 0|\left[S_{n}^{\dagger} S_{\bar{n}}\right]\left(b_{\perp}\right)\left[S_{\bar{n}}^{\dagger} S_{n} g \mathcal{B}_{s \perp}^{(n) \rho}+g \mathcal{B}_{s \perp}^{(\bar{n}) \rho} S_{\bar{n}}^{\dagger} S_{n}\right](0)|0\rangle \\
\hat{\mathcal{S}}_{2}^{\rho}\left(b_{\perp}\right) & \equiv \frac{1}{N_{c}} \operatorname{tr}\langle 0|\left[g \mathcal{B}_{s \perp}^{(n) \rho} S_{n}^{\dagger} S_{\bar{n}}+S_{n}^{\dagger} S_{\bar{n}} g \mathcal{B}_{s \perp}^{(\bar{n}) \rho}\right]\left(b_{\perp}\right)\left[S_{\bar{n}}^{\dagger} S_{n}\right](0)|0\rangle
\end{aligned}
$$

- Under charge conjugation,

$$
\begin{gathered}
A_{\mu}=A_{\mu}^{A} T^{A} \xrightarrow{C} A_{\mu}^{A}(\bar{T})^{A}=-A_{\mu}^{A}\left(T^{A}\right)^{T}=-A_{\mu}^{T}, \\
S_{n}^{a b}(b ; 0, \infty)=\bar{P} \exp \left[-i g \int_{0}^{\infty} \mathrm{d} s n \cdot A_{s}(b+n s)^{T}\right]^{a b} \\
\xrightarrow{C} P \exp \left[+i g \int_{0}^{\infty} \mathrm{d} s n \cdot A_{s}(b+n s)\right]^{b a}=S_{n}^{\dagger b a}(b ; 0, \infty), \\
\Rightarrow \hat{\mathcal{S}}_{1}^{\rho}\left(b_{\perp}\right)=\frac{-1}{N_{c}}\langle 0|\left[S_{n}^{b a} S_{\bar{n}}^{\dagger c b}\right]\left(b_{\perp}\right)\left[S_{\bar{n}}^{d c} S_{n}^{\dagger e d} g \mathcal{B}_{s \perp}^{(n) \rho a e}+g \mathcal{B}_{s \perp}^{(\bar{n}) \rho d c} S_{\bar{n}}^{e d} S_{n}^{\dagger a e}\right](0)|0\rangle \\
=\frac{-1}{N_{c}} \operatorname{tr}\langle 0|\left[g \mathcal{B}_{s \perp}^{(n) \rho} S_{n}^{\dagger} S_{\bar{n}}+S_{n}^{\dagger} S_{\bar{n}} g \mathcal{B}_{s \perp}^{(\bar{n}) \rho}\right](0)\left[S_{\bar{n}}^{\dagger} S_{n}\right]\left(b_{\perp}\right)|0\rangle \\
= \\
\left.\frac{-1}{N_{c}} \operatorname{tr}\langle 0|\left[S_{\bar{n}}^{\dagger} S_{n}\right]\left(b_{\perp}\right)\left[g \mathcal{B}_{s \perp}^{(n) \rho} S_{n}^{\dagger} S_{\bar{n}}^{C}+S_{n}^{\dagger} S_{\bar{n}} g \mathcal{B}_{s \perp}^{(\bar{n}) \rho}\right](0)|0\rangle=-\hat{\mathcal{S}}_{s \perp}^{\rho}\left(b_{\perp}\right) S_{n}\right]_{n \leftrightarrow \bar{n}}^{b a}=-g \mathcal{B}_{s \perp}^{(n) \rho b a},
\end{gathered}
$$

Vanishing of $\hat{S}_{i}^{\rho}(b)$ due to Parity and Charge Conjugation

$$
\begin{aligned}
\hat{\mathcal{S}}_{1}^{\rho}\left(b_{\perp}\right) & \equiv \frac{1}{N_{c}} \operatorname{tr}\langle 0|\left[S_{n}^{\dagger} S_{\bar{n}}\right]\left(b_{\perp}\right)\left[S_{\bar{n}}^{\dagger} S_{n} g \mathcal{B}_{s \perp}^{(n) \rho}+g \mathcal{B}_{s \perp}^{(\bar{n}) \rho} S_{\bar{n}}^{\dagger} S_{n}\right](0)|0\rangle \\
\hat{\mathcal{S}}_{2}^{\rho}\left(b_{\perp}\right) & \equiv \frac{1}{N_{c}} \operatorname{tr}\langle 0|\left[g \mathcal{B}_{s \perp}^{(n) \rho} S_{n}^{\dagger} S_{\bar{n}}+S_{n}^{\dagger} S_{\bar{n}} g \mathcal{B}_{s \perp}^{(\bar{n}) \rho}\right]\left(b_{\perp}\right)\left[S_{\bar{n}}^{\dagger} S_{n}\right](0)|0\rangle
\end{aligned}
$$

- Parity $\hat{\mathcal{S}}_{1}^{\rho}\left(b_{\perp}\right)=-\hat{\mathcal{S}}_{2}^{\rho}\left(b_{\perp}\right)$
- Charge conjugation $\hat{\mathcal{S}}_{1}^{\rho}\left(b_{\perp}\right)=-\left.\hat{\mathcal{S}}_{1}^{\rho}\left(b_{\perp}\right)\right|_{n \leftrightarrow \bar{n}}=-\hat{\mathcal{S}}_{2}^{\rho}\left(-b_{\perp}\right)$
- Decomposition $\hat{\mathcal{S}}_{i}^{\rho}\left(b_{\perp}\right)=b_{\perp}^{\rho} \mathcal{S}_{i}^{\|}\left(b_{T}\right)+\epsilon_{\perp}^{\rho \sigma} b_{\perp \sigma} \mathcal{S}_{i}^{\top}\left(b_{T}\right), \quad i=1,2$
\Rightarrow Parity and charge conjugation contradict

All the subleading soft contributions vanish, unlike most example of subleading SCET where subleading soft contributions are nonzero
(B physics, threshold expansions, thrust, ...)

Extension to Drell-Yan $\pi+p \rightarrow \ell \ell^{\prime}$

Figure from [Bastami et al '20]
The Collins-Soper frame $\left(P_{\pi T}=P_{p T}=q_{T} / 2\right)$

$$
\begin{aligned}
W_{U U}^{\cos \phi}= & \mathcal{F}\left\{-\mathcal{H}^{(0)}\left[\frac{p_{T x}+k_{T x}}{Q} f_{1 p} f_{1 \pi}+\frac{p_{T}^{2} k_{T x}+k_{T}^{2} p_{T x}}{Q M_{p} M_{\pi}} h_{1 p}^{\perp} h_{1 \pi}^{\perp}\right] \quad \text { (From the } \mathcal{P}_{\perp}\right. \text { operators) } \\
& +\mathcal{H}^{(1)}\left[\frac{2 x_{1}}{Q}\left(k_{T x} \tilde{f}_{p}^{\perp} f_{1 \pi}+\frac{M_{p}}{M_{\pi}} p_{T x} \tilde{h}_{p} h_{1 \pi}^{\perp}\right)+\frac{2 x_{2}}{Q}\left(k_{p x} f_{1 p} \tilde{f}_{\pi}^{\perp}+\frac{M_{\pi}}{M_{p}} k_{T x} h_{1 p}^{\perp} \tilde{h}_{\pi}\right)\right]
\end{aligned}
$$

(From the \mathcal{B}_{\perp} operators)

$$
\begin{aligned}
\mathcal{F}[\omega \mathcal{H} g D]=2 z \sum_{f} \int \mathrm{~d}^{2} p_{T} & \mathrm{~d}^{2} k_{T} \delta^{2}\left(\vec{q}_{T}+\vec{p}_{T}-\vec{k}_{T}\right) \omega\left(\vec{p}_{T}, \vec{k}_{T}\right) \\
& \times \int \mathrm{d} \xi \mathcal{H}_{f}(Q,(\xi)) g_{f}\left(x,(\xi), p_{T}\right) D_{f}\left(z,(\xi), k_{T}\right)
\end{aligned}
$$

Extension to $e^{+} e^{-} \rightarrow$ Dihadron

$$
\begin{aligned}
W^{\cos \phi_{0}}=\mathcal{F}\{ & \left\{-\frac{P_{h T}}{z_{1} Q} \mathcal{H}^{(0)}\left[D_{1}^{h_{2}} D_{1}^{h_{1}}-\frac{2 p_{T x} k_{T x}-\vec{p}_{T} \cdot \vec{k}_{T}}{M_{h_{1}} M_{h_{2}}} H_{1}^{\perp h_{2}} H_{1}^{\perp h_{1}}\right]\right. \text { (Kinematic corrections) } \\
& -\mathcal{H}^{(0)}\left[\frac{p_{T x}+k_{T x}}{Q} D_{1}^{h_{2}} D_{1}^{h_{1}}+\frac{p_{T}^{2} k_{T x}+k_{T}^{2} p_{T x}}{Q M_{h_{1}} M_{h_{2}}} H_{1}^{\perp h_{2}} H_{1}^{\perp h_{1}}\right] \text { (From the } \mathcal{P}_{\perp} \text { ops) } \\
& +\mathcal{H}^{(1)}\left[\frac{2}{z_{2} Q}\left(k_{T x} \tilde{D}^{\perp h_{2}} D_{1}^{h_{1}}+\frac{M_{h_{1}}}{M_{h_{2}}} p_{T x} \tilde{H}^{h_{2}} H_{1}^{\perp h_{1}}\right)\right. \\
& \left.\left.\quad+\frac{2}{z_{1} Q}\left(k_{p x} D_{1}^{h_{2}} \tilde{D}^{\perp h_{1}}+\frac{M_{h_{2}}}{M_{h_{1}}} k_{T x} H_{1}^{\perp h_{2}} \tilde{H}^{h_{1}}\right)\right]\right\}
\end{aligned}
$$

$$
\mathcal{F}[\omega \mathcal{H} g D]=2 z \sum_{f} \int \mathrm{~d}^{2} p_{T} \mathrm{~d}^{2} k_{T} \delta^{2}\left(\vec{q}_{T}+\vec{p}_{T}-\vec{k}_{T}\right) \omega\left(\vec{p}_{T}, \vec{k}_{T}\right)
$$

$$
\times \int \mathrm{d} \xi \mathcal{H}_{f}(Q,(\xi)) g_{f}\left(x,(\xi), p_{T}\right) D_{f}\left(z,(\xi), k_{T}\right)
$$

Summary \& Outlook

- Reviewed factorization of $W^{\mu \nu}$ at NLP, as well as the NLP structure functions, including contribution from subleading operators with insertion of \mathcal{P}_{\perp} and $\mathcal{B}_{n_{i} \perp}$
- Discussed NLP soft contributions
- Showed that NLP soft contributions vanish in this process
- Extension to Drell-Yan and $e^{+} e^{-} \rightarrow$ dihadron

Summary \& Outlook

- Reviewed factorization of $W^{\mu \nu}$ at NLP, as well as the NLP structure functions, including contribution from subleading operators with insertion of \mathcal{P}_{\perp} and $\mathcal{B}_{n_{i} \perp}$
- Discussed NLP soft contributions
- Showed that NLP soft contributions vanish in this process
- Extension to Drell-Yan and $e^{+} e^{-} \rightarrow$ dihadron

