Factorization connecting TMDs in SCET & lattice QCD

Stella Schindler

SCET Workshop, University of Bern April 20, 2022

<u>Collaborators:</u> Yong Zhao (Argonne) Iain Stewart (MIT) Markus Ebert (MPI)

Based on: 2004.14831 2201.08401

Non-perturbative contributions to collider physics

- SCET: Typically, matrix elements with lightlike Wilson line paths
- Traditionally, construct models to account for these effects
- Would prefer rigorous results from lattice QCD, but lightlike paths give rise to a sign problem (NP hard?)

Thrust $\frac{d\sigma}{d\tau} = \frac{d\sigma^{pert}}{d\tau} \otimes \boldsymbol{F_{NP}(\boldsymbol{k})}$ $B \rightarrow X_s + \gamma$ $\frac{d\Gamma}{dE_{\nu}} = \frac{d\Gamma}{dE_{\nu}} \otimes \boldsymbol{F}_{\boldsymbol{b}}$ **TMD-PDFs** $\sigma = \sigma^{pert}(b_T) \, \boldsymbol{\sigma}^{NP}(\boldsymbol{b_T})$

Goal: circumvent these issues for TMDs & gain broader insights

What is a TMD?

(Transverse-momentum-dependent parton distribution function)

Phenomenology:

- 3D momentum distribution of quarks/gluons in proton
- SIDIS, Drell-Yan, W/Z production, Higgs, ...
- Universal functions

Experiments:

- ATLAS, HERMES, COMPASS, JLab, ...
- Significantly more data:
 Electron-Ion Collider (2030s)

First principles?

- Calculate on the lattice
- Connect to continuum with a perturbative matching

TMD factorization

Collins, Foundations of Perturbative QCD. Ebert, Schindler, Stewart, Zhao (2022).

I. The big picture

II. Unified TMD notation

III. Factorization

Continuum TMDs from QFT

Soft factor:

- Vacuum matrix element
- Wilson line path: two staples glued together
- Cancels divergences in the beam function

Beam function:

- Proton matrix element
- Staple-shaped Wilson line
- > Our focus

Continuum TMDs from QFT

A mess of continuum schemes

Modern Collins

See Secs. 2.3-2.5 & 2.10 of TMD Handbook

Lattice observable wishlist

1. Numerically tractable

- Wilson lines must have equal-time segments, **cannot be light-like** (NP hard?)
- 2. Easy as possible to renormalize
 - Minimize number of Wilson line sides & cusps

3. Properly defined

• Account for lattice renormalization, soft physics, finiteness

4. Straightforward to connect to continuum

Lattice schemes

Musch-Hägler-Engelhardt-Negele-Schäfer (MHENS) approach

- Pioneered development of lattice TMDs
- Renormalization, soft function not known
- Longest history of calculations, focused on *x*-moments of TMDs

Original papers: MHNS (PRD 2011), MHENS (PRD 2012). TMD handbook Ch. 6 for survey of latest developments.

Quasi-TMDs

- ➢ Based on large momentum EFT (LaMET)
- Renormalization, soft function known
- ➤ Matching to continuum known at 1-loop

Formulation: X. Ji (PRL 2013). Ji, Jin, Yuan, Zhang, Zhao (PRD 2019). Ebert, Stewart, Zhao (JHEP 2019, PRD 2019). Matching: Ebert, Stewart, Zhao (2019). Ji, Liu, Liu (NPB 2020, PLB 2020). Vladimirov, Schafer (PRD 2020).

Unified notational framework

Distinguish different schemes by their limits and arguments

Ebert, Schindler, Stewart, & Zhao (2022).

Beam & soft: definition in QFT

Unified beam function:

$$\boldsymbol{B}_{\boldsymbol{q}_{i}/\boldsymbol{H}}^{[\boldsymbol{\Gamma}]}(b,\boldsymbol{P},\epsilon,\eta\nu,\delta) =$$

$$H(P) \left| \overline{q}_i\left(\frac{b}{2}\right) \frac{\Gamma}{2} \underset{\square}{\overset{W^F}{\rightarrow}} (b, \eta \nu, \delta) q_i\left(-\frac{b}{2}\right) \left| H(P) \right\rangle$$

Unified soft factor:

$$S^{R}(b,\epsilon,\eta\nu,\bar{\eta}\bar{\nu}) = \frac{1}{d_{R}} \langle 0 | \mathbf{Tr}[S^{R}(b,\eta\nu,\bar{\eta}\bar{\nu})] | 0 \rangle$$

Distinguish different schemes by their limits and arguments

Ebert, Schindler, Stewart, & Zhao (2022).

Neat and tidy tables!

	Collins TMD (continuum)	Quasi-TMD (lattice)	
TMD	$\lim_{\epsilon \to 0} Z_{\rm UV}^R \lim_{y_B \to -\infty} \frac{\Omega_{i/h}}{\sqrt{S^R}}$	$\lim_{a \to 0} Z_{\rm UV} \frac{B_{i/h}}{\sqrt{\tilde{S}^R}}$	
Beam function	$\Omega_{q/h}^{[\gamma^+]}\left[b, P, \epsilon, -\infty n_B(y_B), b^- n_b\right]$	$\Omega_{q/h}^{[\gamma^{0,z}]}(ilde{b}, ilde{P},a, ilde{\eta}\hat{z}, ilde{b}^{z}\hat{z})$	
Soft function	$S^{R}\left[b_{\perp},\epsilon,-\infty n_{A}(y_{A}),-\infty n_{B}(y_{B}) ight]$	$S^{R}\left[b_{\perp}, a, -\tilde{\eta} \frac{n_{A}(y_{A})}{ n_{A}(y_{A}) }, -\tilde{\eta} \frac{n_{A}(y_{A})}{ n_{A}(y_{A}) }\right]$	
b^{μ}	$(0,b^-,b_\perp)$	$(0,b_T^x,b_T^y, ilde{b}^z)$	
v^{μ}	$(-e^{2y_B}, 1, 0_\perp)$	(0, 0, 0, -1)	
δ^{μ}	$(0,b^-,0_\perp)$	$(0,0,0, ilde{b}^z)$	
P^{μ}	$\frac{m_h}{\sqrt{2}}(e^{y_P}, e^{-y_P}, 0_\perp)$	$m_h(\cosh y_{ ilde{P}}, 0, 0, \sinh y_{ ilde{P}})$	

I. The big picture II. Unified TMD notation

III. Factorization

Now it's straightforward to see relationships:

Continuum schemes

Ebert, Schindler, Stewart, & Zhao (2022).

Factorization goal

Lattice schemes

Continuum schemes

Derivation procedure

Continuum

(1) Same at large rapidity $P^z \gg \Lambda_{QCD}$

Map variables after expansion

 \succ Take $|\eta| \rightarrow \infty$

(2) Nontrivial relationship

- Different UV renormalization
- Need matching coefficient

The quasi-soft function is chosen to reproduce the Collins soft function.

Step 1: Quasi to LR

$$> |\eta| \rightarrow \infty \& P^z >> \Lambda_{QCD}$$

Compare Lorentz
 invariants formed from
 b^μ, P^μ, δ^μ, ηv^μ

Use boosts to show quasi=LR in this limit

	Quasi	LR	
b^2	$-b_T^2-(ilde{b}^z)^2$	$-b_T^2$	
$(\eta v)^2$	$- ilde\eta^2$	$-2\eta^2 e^{2y_B}$	
$P \cdot b$	$-m_h ilde{b}^z \sinh y_{ ilde{P}}$	${m_h\over\sqrt{2}}b^-e^{y_P}$	
$\frac{b\cdot(\eta v)}{\sqrt{ (\eta v)^2 b^2 }}$	$rac{ ilde{b}^z}{\sqrt{(ilde{b}^z)^2+b_T^2}} ext{sgn}(\eta)$	$-rac{b^-e^{y_B}}{\sqrt{2}b_T}{ m sgn}(\eta)$	
$\frac{P\cdot(\eta v)}{\sqrt{P^2 \eta v ^2}}$	$\sinh y_{ ilde{P}}{ m sgn}(\eta)$	$\sinh(y_P\!-\!y_B){ m sgn}(\eta)$	
$rac{\delta^2}{b^2}$	$\frac{(\tilde{b}^z)^2}{b_T^2+(\tilde{b}^z)^2}$	0	
$\frac{b\cdot\delta}{b^2}$	$\frac{(\tilde{b}^z)^2}{b_T^2 + (\tilde{b}^z)^2}$	0	
$\frac{P \cdot \delta}{P \cdot b}$	1	1	
$\frac{\delta\cdot(\eta v)}{b\cdot(\eta v)}$	1	1	
P^2	m_h^2	m_h^2	

Quasi to LR: same at Large Rapidity

Quasi to LR: same at Large Rapidity

Quasi to LR: same at Large Rapidity

	Need $ ilde\eta$	$=\sqrt{2} e^{y_B} \eta$		Quasi	LR
	/		b^2	$-b_T^2-(ilde{b}^z)^2$	$-b_T^2$
			$(\eta v)^2$	$- ilde\eta^2$	$-2\eta^2 e^{2y_B}$
			$P \cdot b$	$-m_h b^z \sinh y_{ ilde{P}}$	$\frac{1}{\sqrt{2}}b^{-}e^{g_{P}}$
In y_B –	→ –∞ lim	it, $b_T \gg \tilde{b}_z$	$\frac{b\cdot(\eta v)}{\sqrt{ (\eta v)^2 b^2 }}$	$\widetilde{b}^{z} ext{gn}(\eta) \ \sqrt{(\widetilde{b}^{z})^{2}+b_{T}^{2}}$	$-rac{b^-e^{y_B}}{\sqrt{2}b_T}{ m sgn}(\eta)$
/			$P \cdot (\eta v)$	$\sinh y_{ ilde{P}}\mathrm{sgn}(\eta)$	$\sinh(y_P\!-\!y_B){ m sgn}(\eta)$
			$\frac{\delta^2}{b^2}$	$\frac{(\tilde{b}^z)^2}{b_T^2+(\tilde{b}^z)^2}$	0
			$\frac{b\cdot\delta}{b^2}$	$\frac{(\tilde{b}^z)^2}{b_T^2+(\tilde{b}^z)^2}$	0
			$\frac{1 \cdot b}{P \cdot b}$	1	1
		Need $\tilde{\zeta} = \zeta$	$rac{\cdot (\eta v)}{\cdot (\eta v)}$	1	1
			P^2	m_h^2	m_h^2

Step 1: Quasi to LR

Quasi = LR after large rapidity expansion 🔽

	Quasi	LR	
b^2	$-b_T^2-(ilde{b}^z)^2$	$-b_T^2$	
$(\eta v)^2$	$- ilde\eta^2$	$-2\eta^2 e^{2y_B}$	
$P \cdot b$	$-m_h { ilde b}^z \sinh y_{ ilde P}$	${m_h\over\sqrt{2}}b^-e^{y_P}$	
$\frac{b\cdot(\eta v)}{\sqrt{ (\eta v)^2 b^2 }}$	$rac{ ilde{b}^z}{\sqrt{(ilde{b}^z)^2+b_T^2}} ext{sgn}(\eta)$	$-rac{b^-e^{y_B}}{\sqrt{2}b_T}{ m sgn}(\eta)$	
$\frac{P\cdot(\eta v)}{\sqrt{P^2 \eta v ^2}}$	$\sinh y_{ ilde{P}} { m sgn}(\eta)$	$\sinh(y_P\!-\!y_B)\operatorname{sgn}(\eta)$	
$\frac{\delta^2}{b^2}$	$\frac{(\tilde{b}^z)^2}{b_T^2+(\tilde{b}^z)^2}$	0	
$\frac{b\cdot\delta}{b^2}$	$\frac{(\tilde{b}^z)^2}{b_T^2 + (\tilde{b}^z)^2}$	0	
$\frac{P\cdot\delta}{P\cdot b}$	1	1	
$\frac{\delta\cdot(\eta v)}{b\cdot(\eta v)}$	1	1	
P^2	m_h^2	m_h^2	

Step 2: LR to Collins

	TMD	Beam function	Soft function
Collins	$\lim_{\epsilon \to 0} Z^R_{\rm UV} \lim_{y_B \to -\infty} \frac{\Omega_{i/h}}{\sqrt{S^R}}$	$\Omega_{q/h}^{[\gamma^+]}\left[b,P,\epsilon,-\infty n_B(y_B),b^-n_b ight]$	$S^{R}\left[b_{\perp},\epsilon,-\infty n_{A}(y_{A}),-\infty n_{B}(y_{B}) ight]$
LR	$\lim_{-y_B\gg 1}\lim_{\epsilon\to 0} Z^R_{\rm UV} \frac{\Omega_{i/h}}{\sqrt{S^R}}$	$\Omega_{q/h}^{[\gamma^+]}\left[b,P,\epsilon,-\infty n_B(y_B),b^-n_b ight]$	$S^{R}\left[b_{\perp},\epsilon,-\infty n_{A}(y_{A}),-\infty n_{B}(y_{B}) ight]$

- ightarrow LR and Collins TMDs only differ in the order of their y_B >> 1 and ε → 0 limits
- ≻ Fundamental principle of EFT: [here, LaMET, Ji 2013]
 - Order of UV limits does not affect IR physics
 - Gives rise to a perturbative matching coefficient

$$\boldsymbol{f_{LR}} = C_i(x\tilde{P}^z,\mu)\boldsymbol{f_{Collins}}$$

Ebert, Schindler, Stewart, & Zhao (2022).

Combine → Factorization

Quasi-TMD	Matching	RG evolution of	Collins TMD
(lattice)	coefficient	scale ζ	(continuum)

$$\begin{split} \tilde{\boldsymbol{f}}_{\boldsymbol{q}_{i}/\boldsymbol{H}}^{[\boldsymbol{s}]}\left(\boldsymbol{x}, \boldsymbol{\vec{b}}_{T}, \boldsymbol{\mu}, \boldsymbol{\tilde{\zeta}}, \boldsymbol{x} \boldsymbol{\widetilde{P}}^{\boldsymbol{z}}\right) &= C_{i}\left(\boldsymbol{x} \boldsymbol{\widetilde{P}}^{\boldsymbol{z}}, \boldsymbol{\mu}\right) \exp\left[\frac{1}{2}\gamma_{\zeta}^{i}(\boldsymbol{\mu}, \boldsymbol{b}_{T}) \ln\frac{\boldsymbol{\tilde{\zeta}}}{\boldsymbol{\zeta}}\right] \boldsymbol{f}_{\boldsymbol{q}_{i}/\boldsymbol{H}}^{[\boldsymbol{s}]}\left(\boldsymbol{x}, \boldsymbol{\vec{b}}_{T}, \boldsymbol{\mu}, \boldsymbol{\zeta}\right) \\ &\times \left\{1 + \mathcal{O}\left[\frac{1}{\left(\boldsymbol{x} \boldsymbol{\widetilde{P}}^{\boldsymbol{z}} \boldsymbol{b}_{T}\right)^{2}}, \frac{\Lambda_{QCD}^{2}}{\left(\boldsymbol{x} \boldsymbol{\widetilde{P}}^{\boldsymbol{z}}\right)^{2}}\right]\right\} \end{split}$$

- Proof works for all choices of spins and for gluon TMDs
- Cross-checked at one-loop

Ebert, Schindler, Stewart, & Zhao (2020, 2022).

Matching coefficient

$$\tilde{f}_{q_i/H}^{[s]}\left(x,\vec{b}_T,\mu,\tilde{\zeta},x\tilde{P}^z\right) = \boldsymbol{C}_{\boldsymbol{q}}\left(x\tilde{\boldsymbol{P}}^z,\mu\right) \exp\left[\frac{1}{2}\gamma_{\zeta}^i(\mu,b_T)\ln\frac{\tilde{\zeta}}{\zeta}\right] f_{q_i/H}^{[s]}\left(x,\vec{b}_T,\mu,\zeta\right)$$

- > Matching coefficient $C_{i=q/g}$ is independent of spin
- No quark/gluon or flavor mixing ⇒ lattice calculations significantly easier than anticipated
- > Take ratios:

$$\lim_{\tilde{\eta}\to\infty}\frac{\tilde{B}_{\boldsymbol{q_i/h}}^{[\tilde{\Gamma}_1]}(x,\vec{b}_T,\mu,\tilde{\eta},x\tilde{P}^z)}{\tilde{B}_{\boldsymbol{q_j/h'}}^{[\tilde{\Gamma}_2]}(x,\vec{b}_T,\mu,\tilde{\eta},x\tilde{P}^z)} = \frac{f_{\boldsymbol{q_i/h}}^{[\Gamma_1]}(x,\vec{b}_T,\mu,\zeta)}{f_{\boldsymbol{q_j/h'}}^{[\Gamma_2]}(x,\vec{b}_T,\mu,\zeta)}$$

Matching coefficient

$$\tilde{f}_{q_i/H}^{[s]}\left(x,\vec{b}_T,\mu,\tilde{\zeta},x\tilde{P}^z\right) = \boldsymbol{C_q}\left(x\tilde{P}^z,\mu\right) \exp\left[\frac{1}{2}\gamma_{\zeta}^i(\mu,b_T)\ln\frac{\tilde{\zeta}}{\zeta}\right] f_{q_i/H}^{[s]}\left(x,\vec{b}_T,\mu,\zeta\right)$$

- > Matching coefficient $C_{i=q/g}$ is independent of spin
- No quark/gluon or flavor mixing ⇒ lattice calculations significantly easier than anticipated
- > NⁿLL value of C_i is straightforward to compute

$$C_q(x\tilde{P}^z,\mu) = C_q\left[\alpha_s(\mu)\right] \exp\left[\int_{\alpha_s(\mu)}^{\alpha_s(2x\tilde{P}^z)} \frac{\mathrm{d}\alpha}{\beta[\alpha]} \left(\int_{\alpha}^{\alpha_s(\mu)} \frac{\mathrm{d}\alpha'}{\beta[\alpha']} 2\Gamma_{\mathrm{cusp}}^q[\alpha'] + \gamma_C^q[\alpha]\right)\right]$$

Ebert, Schindler, Stewart, & Zhao (2020, 2022).

Status of the lattice

CS Kernel

[Shanahan, Wagman, & Zhao, PRD (2021).]

Reduced soft function

[LPC collaboration, PRL (2020).]

Reduced soft function [Li et al., PRL (2022).]

Summary

- Developed unified notation applicable to offlightcone TMD schemes (lattice & continuum)
- Derived a factorization formula connecting quasi and Collins TMDs
- Nature of factorization & matching coefficients makes the quasi-TMD formulation particularly amenable to lattice study
- A similar approach may prove fruitful for other nonperturbative objects from SCET on the lightcone

Backup slides

Connecting Collins and MHENS schemes

Case of $P \cdot b = 0$

> MHENS equivalent to quasi (same soft, renormalization, etc.)

$$\int \mathrm{d}x \,\, \tilde{f}^{[\Gamma]}_{q_i/h}(x, \vec{b}_T, \mu, \tilde{\zeta}, x \tilde{P}^z, \tilde{\eta}) = \,\, f^{[\Gamma]\mathrm{MHENS}}_{q_i/h}(b^z = 0, \vec{b}_T, \mu, \tilde{P}^z, y_n - y_B, \tilde{\eta})$$

> This case was the focus of MHENS authors

Case of $P \cdot b \neq 0$ (x dependence)

▷ b^z-dependent renormalization

• Challenges due to non-trivial cusp angles & b^z dependence of Wilson line length

➤ b^z-dependent soft function?

• With proper lattice renormalization, Lorentz invariant compensation, construction of suitable soft function, could connect MHENS & LR

Reduced soft function