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Introduction

Progress in calculating parton distributions from lattice QCD

▶ Recent successes for PDFs and TMDs
▶ We propose a method that allows for lattice calculations of double parton

distributions (DPDs)

PDFs TMDs DPDs
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Figure adapted from seminar by J. Gaunt



Motivation - What is double parton scattering?

Two hard scattering partons from each proton
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Higher-twist: DPS is suppressed by Λ2
QCD/Q

2 compared to SPS

▶ Then why worry about DPS?
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Motivation - Why is it interesting?

(1) Competes with SPS in some kinematic regions

Significant DPS contribution in back-to-back jet production

DPS competes with SPS in production of cc̄ pairs as CM energy increases
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Figure 4: Comparison of ∆n
jets distribution in the data with expectations after χ2 minimisation fits of the

templates to data to extract f R
DP. The result obtained using Sherpa for template A is shown in (a) and

the result obtained using Alpgen+Herwig+Jimmy (A+H+J) for template A is shown in (b). The physics
background (physics BG) is added to template A in the figure (dotted line). The fit region is the region
to the left of the dotted line. Data and the overall fit were normalised to unity, template A to 1 − f R

DP and
template B to f R

DP.

Template B, the model for W0 + 2jDPI kinematics, is constructed from dijet data using the selection
outlined in Section 4. The fractional difference between the extracted value of f R

DP when using dijet MC
in place of dijet data was found to be negligible.

7.2 Fit results

The result of fitting the templates to the data is shown in Figure 4. The fraction of DPI events was found to
be f R

DP = 0.18, using the Sherpa prediction for template A. The associated quality of the fit was χ2/Ndf =

1.4 (Ndf = 27). The fraction of DPI was observed to be f R
DP = 0.14 using the Alpgen+Herwig+Jimmy

prediction for template A, with a χ2/Ndf of 0.9. The final value of f R
DP was taken to be the average of

these results ( f R
DP = 0.16). The statistical uncertainty was obtained by varying the χ2 by one unit and

was found to be � 0.07 f R
DP. The systematic uncertainties on the extracted value of f R

DP are discussed in
Section 7.4.

The value f R
DP extracted from the fit to ∆n

jets can be used to normalise appropriate templates for ∆jets.
Figure 5 shows the distribution obtained in data compared to these normalised templates.

7.3 Transition of results from detector to parton level

In this section, the relationship between the parton-level, f P
DP, and reconstruction level, f R

DP, quantities is
established. The fraction of events originating from double parton scattering is defined at parton-level by

f P
DP =

NP
W0+2jDPI

NP
W0+2jDPI

+ NP
W+2jD

. (16)

where NP
W0+2jDPI

is the number of events generated with the two partons originating from DPI and NP
W+2jD

is the number of events generated with the two partons produced directly from the W+2j matrix element.
The partons are required to pass the same selection criteria as the reconstructed jets, pT > 20 GeV and
|y| < 2.8. The value of f P

DP was evaluated to be 0.18 in the nominal Alpgen+Herwig+Jimmy settings.
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ATLAS Collaboration (2012)
Szczurek, Maciula (2012)



Motivation - Why is it interesting?

(2) Probing correlations between partons

DPDs can shed light on color- and spin correlations between partons in the
proton

Bag model calculations of DPDs showing spin correlations
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Outline

What do we know about double parton distributions?

▶ Factorization and definitions
▶ Phenomenology

LaMET: Lightcone correlators from the lattice via perturbative matching

▶ Success of the quasi-PDF approach
▶ Recent progress for the TMD case

Applying LaMET to double parton distributions

▶ Generalizing the previous cases to DPDs: what needs to be done?
▶ Result for the one-loop matching kernel
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Conclusion

We succesfully extended LaMET to the case of double parton distributions

(of concept)



What do we know about double parton scattering?



Let’s get formal - Factorization

Cross section of DPS process factorizes as Hard ⊗ DPDs ⊗ Soft.

dσDPS =

(
4πα2Q2

q

3Ncs

)
1

q21q
2
2

∫
d2b⊥

×
{[

1Fqq
1Fq̄q̄ +

1F∆q∆q
1F∆q̄∆q̄ +

1Fqq̄
1Fq̄q +

1F∆q∆q̄
1F∆q̄∆q

]
11S

+ 2Nc

CF

[
8Fqq

8Fq̄q̄ +
8F∆q∆q

8F∆q̄∆q̄ +
8Fqq̄

8Fq̄q +
8F∆q∆q̄

8F∆q̄∆q

]
88S

+ interference terms
}

Many different color and spin structures
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Let’s get formal - Definitions

DPDs can be expressed as hadronic lightcone correlators. For Fqq:

RFa1a2 = −πP+

∫
db−1
2π

db−2
2π

db−3
2π

e−ix1P
+b−1 e−ix2P

+b−2 eix1P
+b−3

× ⟨P |T †
[
ψ̄n(0

+, b−1 ,b⊥)Γa1
R1

]
i

[
ψ̄n(b

−
2 )Γa2

R2

]
j

× T
[
ψn(0

+, b−3 ,b⊥)
]
i

[
ψn(0)

]
j
|P ⟩

▶ where R1 ⊗R2 = 1⊗ 1, ta ⊗ ta for R = 1, 8 and Γ is a Dirac structure

Soft factors can be written as vacuum matrix elements of Wilson loops

11S = 1 , 88S =
1

2NcCF
⟨0| tr

[
S
]
tr
[
S†] |0⟩ − 1

2NcCF

b⊥

t
z
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Diehl, Ostermeier, Schäfer (2011)
Manohar, Waalewijn (2012)
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Phenomenology - Rapidity evolution

Rapidity divergences: introduce rapidity regulator

▶ Soft factor subtraction

RF sub
a1a2

(x1, x2, b⊥, µ, ζ) = lim
|yB |→∞

RFa1a2(x1, x2, b⊥, µ, P
+, yB)√

RRS(b⊥, µ, yn, yB)

Subtracted DPD depends on rapidity scale ζ

▶ Evolution governed by Collins-Soper equation

d

d log ζ
RF sub

a1a2
= 1

2
Rγζ(b⊥, µ)

RF sub
a1a2

Cross section independent of ζ

Rapidity evolution

TMDs and DPDs share much of the same rapidity behaviour
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Diehl, Nagar (2014)



Phenomenology - Ultraviolet behaviour

Momentum fractions mix under renormalization

▶ Evolution of DPDs takes the form of a convolution

Mixing between DPDs of different flavor, color and spin

Mixing with PDFs

▶ e.g. Fqq̄ mixes with fg

Ultraviolet behaviour

TMDs and DPDs behave very differently in the ultraviolet regime
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Manohar, Waalewijn (2012)
Diehl, Gaunt (2016)
Diehl, Gaunt, Ploessl, Schäfer (2019)
Diehl, Gaunt, Ploessl (2021)



What do we know about the distributions?

Constraints from experiment
▶ Only measurements on σeff with large disagreements → parton correlations

Model calculations
▶ Based on simplified models of the proton

First moment on the lattice
▶ Only the lowest few moments are accessible
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Motivation for calculating DPDs from first principles

Although DPDs play a significant role at the LHC, not much is known about them
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ATLAS Collaboration (2019) Rinaldi, Scopetta, Vetto (2013)



Lightcone correlators on the lattice



What is the problem?

Why can we not calculate these functions on the lattice directly?

Sign problem forces us to Wick rotate: eiS → e−SE

Time-dependent quantities cannot be calculated on the lattice

Problem

Lightcone correlators cannot be calculated using lattice QCD due to the inability
of this method to calculate time-dependent quantities
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LaMET provides a solution

Replace lightcone correlator by a boosted equal-time correlator
▶ Difference is accounted for by perturbative matching relation

For the case of ordinary PDFs:

f̃(x, P z) =

∫ 1

−1

dy

|y|C
(
x

y
,

µ

|y|P z

)
f(y) +O

(
Λ2
QCD

(xP z)2

)
.

Lattice calculation agrees with a direct determination
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Ji (2013)
Izubuchi, Ji, Jin, Stewart, Zhao (2018)

Chen, Jin, Lin, Liu, Yang, Zhang, Zhao (2018)



Case study: TMDs

Rapidity divergences: regularize and subtract
▶ Physical and quasi-TMD defined in terms of beam and soft functions

f =
B√
S
, f̃ =

B̃√
S̃

Rapidity scale dependence
▶ Collins-Soper evolution

d

d log ζ
f(x, b⊥, µ, ζ) = γζ(b⊥, µ)f(x, b⊥, µ, ζ)

Rapidity scale dependence enters matching relation

f̃(x, b⊥, µ, ζ̃, xP̃
z) = C

(
xP̃ z, µ

)
exp

[
1

2
γζ(µ, b⊥) log

(
ζ̃

ζ

)]
f(x, b⊥, µ, ζ)

Perturbative nature of matching kernel proven by analysing the
Lorentz invariants of physical and quasi-TMDs

Breakthrough

First principles calculations of TMDs now possible
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Ji, Liu, Liu (2020)
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Applying LaMET to double parton distributions



What do we need?

Lattice calculable ingredients

▶ Replace lightcone correlators with equal-time correlators

Factorization formula relating quasi- and lightcone-DPDs

▶ Taking the TMD case as a starting point

Perturbative matching kernel

▶ Consistency check: IR poles and logarithms of lightcone- and quasi-DPDs
should match up
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Lattice calculable ingredients

Define quasi-DPD

RF̃a1a2
= −πP+

∫
dbz1
2π

dbz2
2π

dbz3
2π

eix1P
zbz1eix2P

zbz2e−ix1P
zbz3

× ⟨P |T †
[
ψ̄z(0,b⊥, b

z
1)Γ̃a1

R1

]
i

[
ψ̄z(b

z
2)Γ̃a2

R2

]
j

× T
[
ψn(0,b⊥, b

z
3)
]
i

[
ψn(0)

]
j
|P ⟩

Define quasi DPS soft function

88S̃ =
1

2NcCF
⟨0| tr

[
S̃
]
tr
[
S̃†] |0⟩ − 1

2NcCF

▶ where S̃ is the same as the off-lightcone regulated S of TMD case, boosted
such that one of the staples is along the z-axis

Finite lattice box → finite length η̃ Wilson lines → Pinch-poles for large η̃

▶ Soft factor subtraction results in finite distribution as η̃ → ∞

20 / 31



From quasi-TMDs to quasi-DPDs

How do we generalize the TMD factorization formula to the DPD case?

TMDs and DPDs share the same Lorentz invariants

▶ Lorentz invariants based analysis of Ebert et al. mostly carries over

TMDs and DPDs differ in UV behaviour

▶ Convolution; mixing of flavor, color and spin; mixing with PDFs

Matching relation needs to take account for these differences

Expectation

DPD and TMD matching relations are similar after modifying for difference in UV
behaviour
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Matching formula

Conjecture: F̃ = C ⊗ CS evolution ⊗ F

RF̃ sub(x1, x2, b⊥, µ, ζ̃), P
z

=

∫
dy1
y1

dy2
y2

C

(
x1
y1
,
x2
y2
,
(x1P

z)2

µ2
,
(x2P

z)2

µ2
,
ζ̃

µ2

)
× exp

[
1

2
Rγζ(b⊥, µ) log

(
ζ̃

ζ

)]
RF sub(x1, x2, b⊥, µ, ζ)

+mixing terms

+O
(

1

x1,2b⊥P z
,

Λ2
QCD

(x1,2P z)2

)

Consistency check at one-loop

Matching kernel must be free of infrared logarithms, in this case log(b⊥µ), for
perturbation theory to be applicable.
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Calculating the matching kernel

Calculate one-loop DPDs using partonic states ⟨p1p2| and |p1p2⟩
▶ Take the momenta to be collinear pi = ωiP

Problem: DPDs are ill-defined in partonic states

▶ Square of delta function appears

1F (0)
qq = −4π

[
δ
(
1− x1

ω1

)]2
δ
(
1− x2

ω2

)
▶ Smoothen partonic initial state

|in⟩ =
∫

dω3Ψ(ω3) |p3p4⟩

Square of delta function now replaced with normalization factor Ψ(ω1)

▶ Taking narrow-peaked wavefunction at the end of calculation: Ψ(ω1) drops
out of the matching kernel

23 / 31



Calculating the matching kernel: All diagrams
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Calculating the matching kernel: Example

Wavefunction Ψ drops out the matching kernel

F (1) − F̃ (1) = Ψ(ω1)
Γa1 ⊗ Γa2

p+1 p
+
2

∆a1a2
(x1, x2)

Example diagram

∆example
a1a2

= −4πδ(1− x1)δ(1− x2)

[
1

ϵir
+ log

(
µ2b2

⊥
b20

)][
2 + log

(
δ2

p+1 p
+
2

)]
+ . . .
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Consistency check

Infrared poles and logarithms spotted!

∆example
a1a2

= −4πδ(1− x1)δ(1− x2)

[
1

ϵir
+ log

(
µ2b2

⊥
b20

)][
2 + log

(
δ2

p+1 p
+
2

)]
+ . . .

IR divergences and logarithms arise at intermediate steps of the calculation

▶ These have to cancel at the end for perturbative approach to hold
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One-loop consistency check

Color-summed DPD matching kernel is related to PDF matching kernel
▶ Perturbative nature of 1Ca1a2 follows from ordinary PDF case

Color-correlated matching kernel free of infrared logarithms

8C(1)
a1a2

=

(
1− N

2CF

)
1C(1)

a1a2
+ δ

(
1− x1

y1

)
δ
(
1− x2

y2

)
×Nc

[
2 log

(
ζ̃

µ2

)
− 1

2 log
2

(
(2y1P

z)2

µ2

)
− 1

2 log
2

(
(2y2P

z)2

µ2

)
− 5

2
+
π2

6

]

No infrared logs at one-loop

Conjectured perturbative nature of matching kernel consistent with one-loop result

27 / 31



Conclusions



Conclusion

Achievement unlocked: formulating DPDs on the lattice

Successfully showed that LaMET can be applied to DPDs, opening up the way for
lattice calculations of double parton distributions.

Conjectured a factorization formula relating physical- and quasi-DPDs

▶ Still to be proven

Checked consistency of perturbative treatment of matching kernel at one-loop

Findings:

▶ No mixing between color- and spin structures at one-loop order for
quark-quark DPDs

▶ One-loop color-summed DPD related to single PDF matching kernel. True at
higher orders?
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Challenges and future research

Difficulties in calculating the quasi soft function on the lattice

▶ Study ratios of DPDs → soft factor drops out

Lattice renormalization of DPDs: mixing on the lattice

Including gluon, antiquark and interference DPDs

Mixing between flavors and mixing with PDFs
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Thank you for your attention!


