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Motivation
Track-based measurements offer: 


• Superior angular resolution


• Pileup mitigation


• One problem: Track-based 
calculations are not IR safe in 
perturbation theory. 

Track Functions‣ IR divergences are absorbed into 
universal non-perturbative functions. 

calorimeter-based

(all-particle)

track-based

(charged-particle)

[ATLAS Collaboration, 1912.09837]
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✓ This talk: Track function formalism beyond leading order. 

✓ Track functions introduced and studied at . !(αs)
[H. Chang, M. Procura, J. Thaler, W. Waalewijn, 1303.6637, 1306.6630]

[ATLAS Collaboration, 1912.09837]

• But complicated: 

‣ Energy correlators are much simpler to interface with 
track functions.


‣ Moments of track functions have simple evolution. 
higher order calculation 

[ALICE Collaboration, 2107.11303]

✦ New: Preliminary results for the nonlinear -space evolution at .x !(α2
s )

[CMS Collaboration, 2109.03340]



Outline
• Introduction to Track Functions


Definition


Incorporating tracks in observables


• Track Function Evolution in 
Moment Space


Results at 


RG flows for the moments


•Predictions for Track EECs


•Full nonlinear -Space Evolution
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Introduction to Track Functions 
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Track Functions  Ti(x, μ)
Definition

p̄μ
i = xpμ

i + O(ΛQCD) , (0 ≤ x ≤ 1) .

• The track function  describes 
the total momentum fraction  of all 
charged particles (tracks) in a jet 
initiated by a hard parton .

Ti(x, μ)
x

i
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[H. Chang, M. Procura, J. Thaler, W. Waalewijn, 
1303.6637, 1306.6630]

• This formalism applies to other 
subsets of particles (positively-
charged, strange, etc).  



Track Functions
Features

• A generalization of the 
fragmentation function (FF).


Independent of hard process.


Fundamentally non-perturbative, 
with a calculable scale ( ) 
dependence. 


Incorporating correlations 
between final-state hadrons, like 
multi-hadron FFs. 


Sum rule: 

μ

∫
1

0
dx Ti(x, μ) = 1 .

Tg(x, μ)

x

[H. Chang, M. Procura, J. Thaler, W. Waalewijn, 
1303.6637, 1306.6630]
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• The (single-hadron) fragmentation function: 


The probability of a parton to produce a 
single-hadron state considered. 


The momentum sum rule: 

∑
h

∫
1

0
dz z Di→h(z, μ) = 1 .



Incorporating Tracks
• For a -function type observable  

measured using partons: 
δ e

dσ
de

= ∑
N

∫ dΠN
dσN

dΠN
δ [e − ̂e(pμ

i )]

dσ
dē

= ∑
N

∫ dΠN
dσ̄N

dΠN ∫
N

∏
i=1

dxiTi(xi)δ [ē − ̂e(xipμ
i )]

• For correlations of energy flow: -point 
correlation functions 

k
[1303.6637]

full functional 
form of T

8

tra
ck

s

• An energy flow operator that measures 
energy flow on a restricted set  of final 
states: 


• Then, the -point correlator is  

R

k

‣ This can be related to the partonic-level 
correlation functions by a factorization formula: 

e.g. charged hadrons

with dependence on higher moments of T



Incorporating Tracks
• For a -function type observable  

measured using partons: 
δ e

dσ
de

= ∑
N

∫ dΠN
dσN

dΠN
δ [e − ̂e(pμ

i )]

dσ
dē

= ∑
N

∫ dΠN
dσ̄N

dΠN ∫
N

∏
i=1

dxiTi(xi)δ [ē − ̂e(xipμ
i )]

• E.g., 2-point correlator (EEC)
dΣ

d cos χ
= ∑

i,j
∫

EiEj

Q2 δ (cos χ − cos χij) dσ

En
i → ∫ dxiTi(xi)xn

i En
i

= Ti(n)En
i

‣ Energy correlators: tracking easily included and can use 
modern fixed-order techniques.

( dΣ
d cos χ )tr

= ∑
i≠j

Ti(1)Tj(1)∫
EiEj

Q2 δ (cos χ − cos χij) dσ̄

+∑
k

Tk(2)∫
E2

k

Q2 δ (cos χ − 1) dσ̄

χij

[Chen, Moult, Zhang, Zhu, 2004.11381]

[1303.6637]

full functional 
form of T

moments of T

Ti(1)Ei

Tj(1)Ej

Track EEC

Mellin moments
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only

Study of RG equations for 
moments of track functions
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Track Function Evolution 
Tg(1)

Tg(1)

Tq(1)

Tq(3) Tq(3)

Tg(2)

Tg(1)

Tq(0) = 1



Track Function Evolution

• Nonlinear, involving contributions 
from all branches of splittings.
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• While for fragmentation functions: 
Only one branch observed  Linearity→
d

d ln μ2 Di→h(z, μ) = ∑
j

Dj→h ⊗ PT
ji (z, μ)

!(α2
s ), N = 3

• LO evolution: 


Involving contributions from both 
the branches of the splitting. 

d
d ln μ2 Ti(x, μ) = as(μ)∑

{jk}
∫ dz P(0)

i→jk(z1, z2)δ(1 − z1 − z2)

× ∫ dx1dx2Tj(x1, μ)Tk(x2, μ)δ[x − z1x1−z2x2] .

( )i, if = g, u, ū, d, ⋯



Track Function Evolution

• d
d ln μ2 Ti(n) = − ∑

j
Tj(n) γT

ji (n + 1)+terms of products of lower moments
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In Mellin Space

∫

1

0
dx xn

• RG equations for 


 


‣ Matrix form: 


‣ : related to moments of timelike splitting functions. 

T =
{Ti(n), ⋯, Ti1(k)Ti2(n − k), ⋯, Ti1(1)⋯Tin(1)}t

d
d ln μ2 T = ℝT

ℝ

d
d ln μ2 Di→h(n) = − ∑

j
Dj→h(n)γT

ji (n + 1)

• For fragmentation functions: 



Track Function Evolution
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In Mellin Space

d
d ln μ2 Di→h(1) = − ∑

j
Dj→h(1)γT

ji (2)

• For single-hadron FFs: 

• Taking the th moment sets a cutoff at 
the number of the branches observed, 
because   

n
• The evolution equations for 

-hadron FFs. ≤ n∫
1

0
dx Ti(x) = 1

• The evolution for : Ti(1)
d

d ln μ2 Ti(1) = − ∑
j

Tj(1) γT
ji (2)

• The evolution for : Ti(2)
d

d ln μ2 Ti(2) = − ∑
j

Tj(2)γT
ji (3) + ∑

i1,i2

ℝi1,i2Ti1(1)Ti2(1)
• With di-hadron FFs, 

Ti(2) → 1
2 [Di→h1

(2) + Di→h2
(2)

+2 DDi→h1h2
(1,1)]

Ti(1) → Di→h(1) ,

related to

DDj→h1h2 Di1→h1

Di2→
h 2

[de Florian, Vanni: arXiv:0310196]

i
j

i

i 1

i 2



A Surprising Symmetry:
• Energy conservation implies the evolution 

is shift-symmetric: x → x + a
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d
d ln μ2 Ti(x + a) = ∑

X
∫ (∏

m
dxmdzmTim(xm + a)) Pi→i1⋯im⋯({zm}) δ (1 − ∑

m
zm) δ (x − ∑

m
xmzm)

•  This uniquely fixes the form of the evolution of the first three moments:  

For fragmentation functions: 
d

d ln μ2 Di→h(z, μ) = ∑
j

Dj→h ⊗ Pji(z, μ)

• Scale invariant  .D(y) → D(ay)

Here  where  denotes the singlet timelike splitting function. γji(n) = − ∫
1

0
dz zn−1Pji(z, as) Pji

shift-invariant objects: 



• Two independent approaches to extracting the evolution at :  

‣  Calculating two IR-safe observables modified to measure on tracks. When computed 
on tracks, they have collinear divergences. 

!(α2
s )

Methods of Calculation

absorbed by the track functions 

‣ Guideline: By computing the collinear divergences, we can extract the RG evolution 
for track functions.
(Projected) Energy Correlators


- -point correlators on tracks involves 
moments up to . 


- -point track correlator 

 Evolution for 

‣ The evolution for the lower moments 

can be checked at wide-angle region. 

n
T(n)

n
T(n, μ)

pole cancellation
in collinear limit

Jet Functions

- Directly calculating track jet functions 

 .  


- Taking -th moments to extract the 
evolution for .  

J(s, x)
n

T(n, μ)

[Ritzmann, Waalewijn,1407.3272] 

✓ check on the track function formalism  

Agree



Track Function Evolution at !(α2
s )

In Mellin Space

• The evolution for  is fixed by DGLAP to all orders. 


• For the second and the third moments, the evolution can be divided into two parts: a linear part fixed 
by DGLAP, and corrections proportional to powers of . 

Δ

Δ
16

Δqi
= Tqi

(1) − Tg(1) ➡For the higher moments, there’re 
three parts: a linear part fixed by 
DGLAP, corrections proportional to 
powers of , and nonlinear terms that 
are not proportional to powers of . 

Δ
Δ



The Size of  in QCDΔ

• The effect of  on the evolution of 
the second central moment is much 
smaller than for the higher moments.


• The  terms are effectively 
suppressed by one order in the 
perturbative expansion.

Δ

Δ

For the evolution of  (  ; ), σi(n) i = q, g n = 2,3

17

Ri(n) = effect of Δ-terms at NLO
effect of the DGLAP part at NNLO

NNLO



Non-Linearities
in the 4th and 5th Moments
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Notation: 

QCD:  

nonlinear terms not 
proportional to powers of Δ

linear term fixed 
by DGLAP corrections proportional to powers of Δ



Non-Linearities
in the 4th and 5th Moments
Pure Yang-Mills theory:  

: cumulantsκ

linear term fixed 
by DGLAP

nonlinear term

κ(4) = σ(4) − 3σ2(2)
κ(5) = σ(5) − 10σ(3)σ(2)

19



Non-Linearities • Arrows denote the direction of the 
derivatives with respect to . 
• A single fixed-point in the evolution at the 
origin, corresponding to the trivial fixed 
point where all cumulants vanish. 

ln μ

• , 

 symmetry

κ(5) → − κ(5)
κ(3) → − κ(3)

20

in the 4th and 5th Moments
Pure Yang-Mills theory:  
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Predictions for Track EECs 

ℰ( ⃗n 1)

ℰ( ⃗n 2)



Track EEC for  annihilatione+e−

LO NLO Pythia
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• First NLO ( ) calculations for 
track-based observables 

• Results are available in completely 
analytical form. 

!(α2
s )

NLO, Positively Charged

NLO, Charged

NLO, Partonic
Pythia, Positively Charged

Pythia, Charged

Pythia, All

-1.0 -0.5 0.0 0.5 1.0
0.00

0.05

0.10

0.15

0.20

0.25

cos�
EE
C

Q = 250 GeV

• Track function formalism can be 
applied to other subsets of hadrons 
specified by their quantum numbers.  



In the collinear limit: 
Jet Substructure

• Matches the state-of-the-art calculation for jet substructure, but now on tracks! 

Ti(1)Ei

Tj(1)Ej

Ti(1)Ei

Tj(1)Ej

χ → 0

Hard
Collinear

3-point energy 
correlator

2-point energy 
correlator
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[Kardos, Larkoski, Trocsanyi, 2002.05730]

• Jet functions for projected energy correlators on tracks, 

: Moments  appear as the coefficients.


• The jet function constants (the jet functions with the logarithmic 
dependence excluded): e.g. for track EECs, up to 


⃗J tr(ln xLQ2

μ2 , as(μ)) Ti(n, μ)

!(α2
s )

jg = 1
4 Tg(2)+as Tg(1)Tg(1)CA (− 449

150 )+ ∑
q

Tq(1)Tq̄(1)TF (− 7
25 )

+a2
s Tg(1)Tg(1) C2

A (− 527ζ3
10 + 133639871

3240000 − 2159π2

1800 + 19π4

90 ) + CAnfTF
139
270 + ∑

q
Tq(1)Tq̄(1)⋯

• The energy correlator is a jet observable: . Σ(xL) = ⃗J ⊗ ⃗H
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Full Non-Linear  
x-Space Evolution  

�=10 GeV, Tq=Tg= 12x2(1-x)

�=100 GeV, Tg
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�=1000 GeV, Tq
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Track Jet Functions
To calculate directly…
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The definition for track jet functions is that 

Tg
Tq

Tg

Tg
Tg

Tq

Tq Tq

TQ̄
TQ
Tq

Tq
Tq

Tq̄

Tq Tq

Tg TgTg Tg

RRRV

[S. Catani, M. Grazzini: arXiv:hep-ph/9908523] 

[G. Sborlini, D. Florian, G. Rodrigo: arXiv:1310.6841]


LO track jet function: 
 J(0)

a = δ(s)T(0)
a

E.g., the quark case: 

In DR:  T(0)
a = Tbare

a



Calculation of Track Jet Functions
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z1

z

t

z2

Ja(s, x) ⊃ ∫ dx1dx2dx3 ∫
1

0
dz1dz2dz3δ(1 − z1 − z2 − z3)Pa→a1a2a3

(z1, z2, z3)

× T(0)
a1

(x1)T(0)
a2

(x2)T(0)
a3

(x3)δ(x − z1x1 − z2x2 − z3x3)

After integration over angular variables,   

have not been expanded in ϵ

z1

z2

• For  ( ), do the coordinate transformation zi1 < zi2 < zi3 i1, i2, i3 = 1,2,3

[Sector decomposition (Heinrich, arXiv:0803.4177)]

• For  splitting  , we can set 1 → n + 1 P1→n+1(z1, z2, ⋯, zn+1)
zi1 < zi2 < ⋯ < zin < zin+1 and t1 →

zi1

zi2
, t2 →

zi2

zi3
, ⋯, tn →

zin

zin+1

to divide the integration region and then separate the singularities.  

‣ For  splittings,  for  .1 → 2 zi1 → z
1 + z

, zi2 → 1
1 + z

zi1 < zi2



Evolution for Track Functions
NLO, in  SYM1 = 4
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K(1)
1→1

K(1)
1→2(z)

K(1)
1→3(z, t)

: t’ Hooft coupling constanta



Solving RGEs
Numerically, at LO

• A toy model: at  GeV, 
 ( ) 

of which the first moment is 
0.6 ~ that in real world QCD. 


• Suppose that the track 
function at any scale, , 
can be well described by a 
polynomial of some degree. 

 can be restored from a 
finite number of its moments. 

μ = 10
Ti(x) = 12x2(1 − x) i = q, g

T(x, μj)

T(x, μj)
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Summary & Outlook
• Track functions offer a QFT approach to calculating track-based observables:  


• Track function formalism studied beyond leading order: 

Evolution for moments of track functions at . 


Numerical studies on the -terms and the RG flows. 

Energy correlators interface in a simple manner with tracking information through 
the moments, allowing for high order calculations.


• Preliminary results for the nonlinear -space evolution at 

Evolution for any moment of the track function is provided. 


• This formalism allows IR-safe observables to be computed on any subset of final-
state hadrons specified by some particular quantum numbers.

!(α2
s )

Δ

x !(α2
s )
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Thank you!
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Backup
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A Surprising Symmetry:
•  leads tox → x + a

32

• The shift symmetry requires that the evolution for moments of track function should 
still hold after the above transformation, which constrains the form of the evolution up 
to all loop orders: e.g.,  

in Mellin space, e.g., 



A Surprising Symmetry:
•  leads tox → x + a

33

• The shift symmetry requires that the evolution for moments of track function should 
still hold after the above transformation, which constrains the form of the evolution up 
to all loop orders: e.g.,  

in Mellin space, e.g., 

= 0



A Surprising Symmetry:
•  leads tox → x + a

34

• The shift symmetry requires that the evolution for moments of track function should 
still hold after the above transformation, which constrains the form of the evolution up 
to all loop orders: e.g.,   

in Mellin space, e.g., 

• We can use shift invariant objects to reorganize the form of the evolution to avoid this 
redundancy. (See Page 14.)

Up to this stage we haven’t used the Feynman diagram approach.

This implies there is redundancy for these evolution kernels.



Track EECs
• The expression for track EEC has the form: 
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Track EECs
• The expression for track EEC has the form: 

where  has a similar pole structure to the partonic collinear FF. Γ̂−1
2

d ⃗Σ
dz

= d ⃗Σ̂
dz

⋅ Γ̂−1
2
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-Space Evolutionx
The evolution up to NLO has the form: 

37

where  denote parton species (e.g., ) and  .i, j, k, m, n q, g as = αs(μ)/(4π)



-Space Evolutionx
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For brevity, 



Track Jet Functions

39

E.g., The form of the quark jet function on tracks: -terms:  δ(s)

RHS of the evolution for  at NLO with  in place of Tq(x) T(0) T(x, μ)

LO evolution kernel

: finite matching coefficients4

+⋯]
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