Beautiful and Charming Energy Correlators

SCET 2022

Bianka Meçaj -Yale University

Work in preparation with Ian Moult and Kyle Lee

Talk layout

- Jet-substructure at particle colliders
- Introducing energy correlators to jet-substructure
- Energy-Energy correlators for light quarks
- Energy-energy correlators for heavy quarks: dead-cone effect
- Conclusions

Jet substructure (JSS) at particle colliders

Study the internal kinematic properties of jets

 Powerful tool to study QCD dynamics and probe New Physics.

• Is there a way to study JSS from field theory first principles (symmetries, computation techniques etc)?

Jet substructure (JSS) at particle colliders

Energy Correlators

Energy deposit in a calorimeter cell at infinity ⇒energy flow/light ray operators.

$$\mathcal{E}(ec{n}) = \int\limits_0^\infty dt \lim_{r o\infty} r^2 n^i T_{0i}(t,rec{n})$$
 [Korchemsky, Tkachov, Sterman, Sveshnikov]

[Hofman and Maldacena 2008]

Distribution of energy inside the jet is described by correlation functions of the energy flow operators ⇒energy correlators.

$$\langle \Psi \mid \varepsilon(\overrightarrow{n}_1)\varepsilon(\overrightarrow{n}_1)\dots\varepsilon(\overrightarrow{n}_n) \mid \Psi \rangle$$

Similar idea with the CMB measurements!

Clearly illustrates dynamics at particular scale.

Energy correlators for JSS

They are intrinsically IR-safe observable and not sensitive to soft radiation!

$$\langle \Psi \mid \varepsilon(\overrightarrow{n}_1)\varepsilon(\overrightarrow{n}_1)\dots\varepsilon(\overrightarrow{n}_n) \mid \Psi \rangle$$

• Here we focus on the two-point function: energy-energy correlators (EEC)

$$\langle \Psi \mid \varepsilon(\overrightarrow{n}_1)\varepsilon(\overrightarrow{n}_2) \mid \Psi \rangle$$

[Basham, Brown, Ellis, Love]

- Study of JSS at high energies corresponds to the small angle limit of the energy correlators (highly boosted).
 - ⇒ Universal scaling behavior in this limit!

$$\big\langle \Psi \mid \varepsilon(\overrightarrow{n}_1)\varepsilon(\overrightarrow{n}_2) \mid \Psi \big\rangle \sim \sum \theta^{\gamma_i} \mathcal{O}_i(\overrightarrow{n}_1)$$

[Hofman, Maldacena] [Chang, Kologlu, Kravchuk, Simmons Duffin, Zhiboedov]

⇒Can probe the collinear substructure of the jet in a clean way.

Looking inside the jets with EEC

Light quark jets from LHC open data

There is a distinct scaling behavior for uniformly distributed free-hadrons and free quarks/gluons.

[Komiske, Moult, Taler, Zhu]

Anomalous scaling in the perturbative region .

EEC correlators in light quarks

Small angle limit in $e^+e^- \rightarrow q\bar{q}g$

• EEC is the weighted cross-section by the energy in each detector separated by the small angle:

$$\frac{d\sigma}{dz} = \sum_{i,j} \int d\sigma \, \frac{E_i E_j}{Q^2} \delta \left(z - \frac{1 - \cos \chi_{ij}}{2} \right)$$
$$0 \le z = \frac{1 - \cos \chi}{2} \le 1$$

Factorization formula

$$\sum (z, \mu, \ln \frac{Q^2}{\mu^2}) = \overrightarrow{J}(\mu, \ln \frac{zx^2Q^2}{\mu^2}) \otimes \overrightarrow{H}(\mu, x, \frac{Q^2}{\mu^2})$$

Scale evolution is governed by the time-like splitting kernels

$$\gamma_T^{(0)} = \begin{pmatrix} \frac{25}{6}C_F & -\frac{7}{15}n_f \\ -\frac{7}{6}C_F & \frac{14}{5}C_A + \frac{2}{3}n_f \end{pmatrix}$$

[Dixon, Moult, Zhu]

7

Dead-cone effect in QCD

Fundamental phenomena

Parton-shower pattern depends on the mass of the emitting parton.

• Angular suppression $\propto \frac{M}{E}$.

Observable used for the observation of the dead-cone effect in LHC data

$$R(heta) = rac{1}{N^{
m D^0\, jets}} rac{{
m d}n^{
m D^0\, jets}}{{
m d}\ln(1/ heta)} igg/rac{1}{N^{
m inclusive\, jets}} rac{{
m d}n^{
m inclusive\, jets}}{{
m d}\ln(1/ heta)}igg|_{k_{
m T}, E_{
m Radiator}}$$

First observation for QCD by ALICE collab in [2106.05713]

- This is not an IR-safe observable.
- Not possible to calculate it from first principles in QFT.

Dead-cone effect with energy correlators

Probe it from bottom and charm quarks EEC

- EEC can be computed in perturbation theory ⇒ compare measurements with predictions.
- It can be a very clean observable due to the advantage of the small angle limit.

- Can easily observe the change of shape around the heavy quark scale.
- Both MC and fixed order results have a suppression at small angles.

Possibly a manifestation of the dead-cone effect

Solid line: Fixed order
Points are generated with Pythia

[Lee, BM, Moult-in preparation]

Heavy quark jet function

Non-trivial calculation due to the presence of mass

| Control | C

+ mirror diagram

- The quark and gluon here share energy fractions x and (1-x) of the initial heavy quark energy.
- For the EEC the jet function is weighted by these energies.
- This corresponds to three different ways the "detectors" can be places.

Heavy quark jet function

For the virtual diagrams the dependance is trivial, namely multiply the result by $\delta(z)$

$$\frac{\alpha_s C_F}{\pi} \delta(z) \left[\frac{1}{2\epsilon^2} + \frac{1}{\epsilon} \left(1 + \frac{1}{2} \ln \frac{\mu^2}{M^2} \right) + \frac{1}{4} \ln^2 \frac{\mu^2}{M^2} + \ln \frac{\mu^2}{M^2} + \frac{\pi^2}{24} + 2 \right]$$

Heavy quark jet function

Result

The mass should not affect the UV behavior of the jet function. This can be seen from comparing the UV poles with the light quark jet function.

$$\begin{split} J_{q}^{\text{bare}}(z,\mu) = & \delta(z) + \frac{\alpha_{s}C_{F}}{4\pi} \left[\delta(z) \left(-\frac{3}{\epsilon_{\text{UV}}} - \frac{37}{3} \right) + 3\frac{Q^{2}}{\mu^{2}} \mathcal{L}_{0} \left(\frac{Q^{2}}{\mu^{2}} z \right) \right] \\ = & \delta(z) + \frac{\alpha_{s}C_{F}}{4\pi} \left[\delta(z) \left(-\left(\gamma_{qq}^{(0)}(3) + \gamma_{gq}^{(0)}(3) \right) \frac{1}{\epsilon_{\text{UV}}} - \frac{37}{3} \right) + 3\frac{Q^{2}}{\mu^{2}} \mathcal{L}_{0} \left(\frac{Q^{2}}{\mu^{2}} z \right) \right] \end{split}$$

[Lee, BM, Moult-in preparation]

Factorization formula

The heavy quark EEC factorizes into a jet function and the hard function (the same as for the light quarks) similarly to the light quark case.

For resummation beyond LL there will be mixing between $J_{\mathcal{Q}}$ and $J_{\mathcal{Q}}$!

From this result one can derive the scale evolution of the EEC. Anomalous dimensions are related to moments of the heavy quark jet function with respect to x and (1-x).

Nevertheless resummation should not change the shape of the energy distribution.

Conclusions

- Collinear limit of the energy correlators provides a useful tool to study JSS
- They are well-defined field theory object ⇒take advantage of theory advances
- Energy correlators on heavy particles inside a jet can probe their mass scale
- They can be measured at colliders to observe the dead-cone effect

Thank you!