Dissecting the collinear structure of quark splitting at NNLL

Basem Kamal El-Menoufi - The University of Manchester
Work based on 2109.07496 with M. Dasgupta (see also 2007.10355)

SCET2022 - University of Bern

The University of Manchester

A Bird's-Eye view

© (Semi)-analytic resummation has achieved an impessive accuracy (NNLL and N^{3} LL) over previous decades.

$1-T$	$0803.0342,1006.3080,1105.4560$
ρ_{H}	1005.1644
B_{T}, B_{W}	1210.0580
C-parameter	1411.6633
EEC	hep-ph/0407241,1708.04093,1801.02627
Angularities	$1806.10622,1807.11487$
D-parameter	1912.09341

© Parton showers (PS) have not kept up with such progress.
4 PS are essential due to their versatility: It is much more efficient to simulate QCD dynamics than to resum a specific observable.

Motivation: Recent progress in NLL accurate PS

© The PanScales family of PS has been able to achieve NLL accuracy for any recursive IRC safe observable: ${ }^{1}$

[^0]
Outline

1. What do we need to achieve NNLL? Introduction to B_{2}^{q}

Outline

1. What do we need to achieve NNLL? Introduction to B_{2}^{q}
2. Triple-collinear splitting functions

Outline

1. What do we need to achieve NNLL? Introduction to B_{2}^{q}
2. Triple-collinear splitting functions
3. The physical coupling beyond the soft limit

Outline

1. What do we need to achieve NNLL? Introduction to B_{2}^{q}
2. Triple-collinear splitting functions
3. The physical coupling beyond the soft limit
4. Extracting the differential $\mathcal{B}_{2}^{q}(z)$

Outline

1. What do we need to achieve NNLL? Introduction to B_{2}^{q}
2. Triple-collinear splitting functions
3. The physical coupling beyond the soft limit
4. Extracting the differential $\mathcal{B}_{2}^{q}(z)$
5. Outlook

Look back at NLL

© Over 30 years ago Catani, Marchesini \& Webber introduced the notion of a soft physical coupling:

$$
\mathrm{d} \mathcal{P}_{\mathrm{sc}}=C_{i} \frac{\alpha_{s}^{\text {phys }}}{\pi} \frac{\mathrm{d} k_{t}^{2}}{k_{t}^{2}} \frac{\mathrm{~d} z}{1-z}, \quad \alpha_{s}^{\text {phys }}=\alpha_{s}\left(k_{t}^{2}\right)\left(1+K_{\mathrm{CMW}} \frac{\alpha_{s}\left(k_{t}^{2}\right)}{2 \pi}\right)
$$

© The CMW coupling represents the intensity of soft gluon radiation.

$$
K_{\mathrm{CMW}}=\left(\frac{67}{18}-\frac{\pi^{2}}{6}\right) C_{A}-\frac{10}{9} T_{F}
$$

© For showers that interwine real and virtual corrections through unitarity, specifying the (CMW) scheme and scale of the coupling is the sole NLO ingredient to achieve NLL accuracy.

Questions for NNLL PS

© What is the scale of the coupling beyond the soft limit?

$$
k_{t}^{2} \rightarrow k_{t}^{2} * f(z), \quad f(z)=?
$$

© The inclusive limit of the double-soft function defines the CMW coupling. Can we furnish a commensurate understanding of the triple-collinear splitting functions?
© What is the underlying physics of the coefficient B_{2}^{q} ? Can we define a suitable differential version thereof?

A Can we extend the notion of the web beyond the soft limit?

Introduction into B_{2}^{q}

© So what exactly is B_{2}^{q} ?

- Let us take an example from the transverse momentum distribution in hadronic collisions: ${ }^{2}$

$$
\frac{\mathrm{d} \sigma_{a b \rightarrow F}}{\mathrm{~d} p_{t}^{2}}=\frac{1}{2} \int b \mathrm{~d} b J_{0}\left(b p_{t}\right) W_{a b}^{F}(s, Q, b)
$$

© The interesting piece is the function $W_{a b}^{F}(s, Q, b)$, which includes the quark/gluon form factor:

$$
S_{q / g}(Q, b)=\exp \left(-\int_{b_{0}^{2} / b^{2}}^{Q^{2}} \frac{\mathrm{~d} q^{2}}{q^{2}}\left[A_{q / g}\left(\alpha_{s}\right) \ln \frac{Q^{2}}{q^{2}}+B_{q / g}\left(\alpha_{s}\right)\right]\right)
$$

[^1]
Introduction into B_{2}^{q}

- Each function has a perturbative expansion. The A function has soft origin, while the B function has a hard-collinear origin.

$$
A_{q / g}=\sum_{n=1}^{\infty}\left(\frac{\alpha_{s}}{2 \pi}\right)^{n} A_{(n)}^{q / g}, \quad B_{q / g}=\sum_{n=1}^{\infty}\left(\frac{\alpha_{s}}{2 \pi}\right)^{n} B_{(n)}^{q / g}
$$

A Let us focus on the B series. Going back to direct space, one finds a "hard-collinear" logarithm:

$$
\left.\left(\frac{\alpha_{s}}{2 \pi}\right) B_{1}^{q / g}\|\quad\| \frac{\alpha_{s}}{2 \pi}\right)^{2} B_{2}^{q / g}
$$

This talk is about B_{2}^{q} and a suitably defined differential version $\mathcal{B}_{2}^{q}(z)$.

Introduction into B_{2}^{q}

© What do we know about the structure of B_{2}^{q} ?
© In $e^{+} e^{-} \rightarrow$ hadrons, there exists a complete framework to resum any recursive IRC (global) observable up to NNLL accuracy - ARES. ${ }^{2}$

A For any such observable, we have: ${ }^{3}$

$$
B_{2}^{q}=-\gamma_{q}^{(2)}+C_{F} b_{0} X_{v}, \quad b_{0}=\frac{11}{6} C_{A}-\frac{2}{3} T_{R} n_{f}
$$

© We have two pieces. First, an observable-dependent constant, X_{v}, that comes multiplied by b_{0}. The other piece, $\gamma_{q}^{(2)}$, is universal and represents the endpoint contribution, i.e. $\delta(1-x)$, to the NLO non-singlet DGLAP kernel obtained from sum rules. ${ }^{4}$

[^2]
Triple collinear splitting functions

At NLO, we have four different splittings: ${ }^{5}$
ค $\quad q \rightarrow g_{1} g_{2} q_{3}$

${ }^{5}$ Catani \& Grazzini hep-ph/9810389

Triple collinear splitting functions

© Therefore, we end up with abelian, C_{F}^{2}, and non-abelian, $C_{F} C_{A}$, pieces:

$$
\left\langle\hat{P}_{g_{1} g_{2} q_{3}}\right\rangle=C_{F}^{2}\left\langle\hat{P}_{g_{1} g_{2} q_{3}}^{(\mathrm{ab})}\right\rangle+C_{F} C_{A}\left\langle\hat{P}_{g_{1} g_{2} q_{3}}^{(\mathrm{nab})}\right\rangle
$$

© These are functions of the invariant masses $s_{i j} \simeq z_{i} z_{j} \theta_{i j}$, where z_{i} is the light-cone momentum fraction of parton i.

$$
\begin{aligned}
\left\langle\hat{P}_{g_{1} g_{2} q_{3}}^{(\mathrm{ab})}\right\rangle & =\left\{\frac{s_{123}^{2}}{2 s_{13} s_{23}} z_{3}\left[\frac{1+z_{3}^{2}}{z_{1} z_{2}}-\epsilon \frac{z_{1}^{2}+z_{2}^{2}}{z_{1} z_{2}}-\epsilon(1+\epsilon)\right]\right. \\
& +\frac{s_{123}}{s_{13}}\left[\frac{z_{3}\left(1-z_{1}\right)+\left(1-z_{2}\right)^{3}}{z_{1} z_{2}}+\epsilon^{2}\left(1+z_{3}\right)-\epsilon\left(z_{1}^{2}+z_{1} z_{2}+z_{2}^{2}\right) \frac{1-z_{2}}{z_{1} z_{2}}\right] \\
& \left.+(1-\epsilon)\left[\epsilon-(1-\epsilon) \frac{s_{23}}{s_{13}}\right]\right\}+(1 \leftrightarrow 2)
\end{aligned}
$$

Triple collinear splitting functions

$$
\begin{aligned}
\left\langle\hat{P}_{g_{1} g_{2} q_{3}}^{(\mathrm{nab})}\right\rangle & =\left\{(1-\epsilon)\left(\frac{t_{12,3}^{2}}{4 s_{12}^{2}}+\frac{1}{4}-\frac{\epsilon}{2}\right)\right. \\
& +\frac{s_{123}^{2}}{2 s_{12} s_{13}}\left[\frac{\left(1-z_{3}\right)^{2}(1-\epsilon)+2 z_{3}}{z_{2}}+\frac{z_{2}^{2}(1-\epsilon)+2\left(1-z_{2}\right)}{1-z_{3}}\right] \\
& -\frac{s_{123}^{2}}{4 s_{13} s_{23}} z_{3}\left[\frac{\left(1-z_{3}\right)^{2}(1-\epsilon)+2 z_{3}}{z_{1} z_{2}}+\epsilon(1-\epsilon)\right] \\
& +\frac{s_{123}}{2 s_{12}}\left[(1-\epsilon) \frac{z_{1}\left(2-2 z_{1}+z_{1}^{2}\right)-z_{2}\left(6-6 z_{2}+z_{2}^{2}\right)}{z_{2}\left(1-z_{3}\right)}+2 \epsilon \frac{z_{3}\left(z_{1}-2 z_{2}\right)-z_{2}}{z_{2}\left(1-z_{3}\right)}\right] \\
& +\frac{s_{123}}{2 s_{13}}\left[(1-\epsilon) \frac{\left(1-z_{2}\right)^{3}+z_{3}^{2}-z_{2}}{z_{2}\left(1-z_{3}\right)}-\epsilon\left(\frac{2\left(1-z_{2}\right)\left(z_{2}-z_{3}\right)}{z_{2}\left(1-z_{3}\right)}-z_{1}+z_{2}\right)\right. \\
& \left.\left.-\frac{z_{3}\left(1-z_{1}\right)+\left(1-z_{2}\right)^{3}}{z_{1} z_{2}}+\epsilon\left(1-z_{2}\right)\left(\frac{z_{1}^{2}+z_{2}^{2}}{z_{1} z_{2}}-\epsilon\right)\right]\right\}+(1 \leftrightarrow 2)
\end{aligned}
$$

Triple collinear splitting functions

At NLO, we have four different splittings:
ค $\quad q \rightarrow q_{1}^{\prime} \bar{q}_{2}^{\prime} q_{3} \quad$ ค $\quad q \rightarrow q_{1} \bar{q}_{2} q_{3}$

Triple collinear splitting functions

© Therefore, we end up with two structures. Summing over flavours:

$$
\begin{gathered}
\sum_{f}\left\langle\hat{P}_{q_{1}^{f} \bar{q}_{2}^{f} q_{3}}\right\rangle=n_{f}\left\langle\hat{P}_{q_{1}^{\prime} \bar{q}_{2}^{\prime} q_{3}}\right\rangle+\left\langle\hat{P}_{q_{1} \bar{q}_{2} q_{3}}^{(\mathrm{id})}\right\rangle \\
\left\langle\hat{P}_{q_{1}^{\prime} \bar{q}_{2}^{\prime} q_{3}}\right\rangle=\frac{1}{2} C_{F} T_{R} \frac{s_{123}}{s_{12}}\left[-\frac{t_{12,3}^{2}}{s_{12} s_{123}}+\frac{4 z_{3}+\left(z_{1}-z_{2}\right)^{2}}{z_{1}+z_{2}}+(1-2 \epsilon)\left(z_{1}+z_{2}-\frac{s_{12}}{s_{123}}\right)\right] \\
\left\langle\hat{P}_{q_{1} \bar{q}_{2} q_{3}}^{(\mathrm{id})}\right\rangle= \\
C_{F}\left(C_{F}-\frac{1}{2} C_{A}\right)\left\{(1-\epsilon)\left(\frac{2 s_{23}}{s_{12}}-\epsilon\right)+\frac{s_{123}}{s_{12}}\left[\frac{1+z_{1}^{2}}{1-z_{2}}-\frac{2 z_{2}}{1-z_{3}}\right.\right. \\
\left.-\epsilon\left(\frac{\left(1-z_{3}\right)^{2}}{1-z_{2}}+1+z_{1}-\frac{2 z_{2}}{1-z_{3}}\right)-\epsilon^{2}\left(1-z_{3}\right)\right] \\
\left.-\frac{s_{123}^{2}}{s_{12} s_{13}} \frac{z_{1}}{2}\left[\frac{1+z_{1}^{2}}{\left(1-z_{2}\right)\left(1-z_{3}\right)}-\epsilon\left(1+2 \frac{1-z_{2}}{1-z_{3}}\right)-\epsilon^{2}\right]\right\}+(2 \leftrightarrow 3)
\end{gathered}
$$

Road map

© What variables do we fix?
© Gluon decay:

© Gluon emission:

Gluon decay: web variables

© To obtain an analytic handle on the integrals, we express the triple collinear phase space as follows:

$$
\mathrm{d} \Phi_{1 \rightarrow 3}^{\mathrm{web}}=\frac{(4 \pi)^{2 \epsilon}}{256 \pi^{4}} \frac{2 z^{1-2 \epsilon} d z}{1-z} \frac{1}{\Gamma(1-\epsilon)} \frac{d^{2-2 \epsilon} k_{\perp}}{\Omega_{2-2 \epsilon}} \frac{d s_{12}}{\left(s_{12}\right)^{\epsilon}} \frac{d z_{p}}{\left(z_{p}\left(1-z_{p}\right)\right)^{\epsilon}} \frac{1}{\Gamma(1-\epsilon)} \frac{d \Omega_{2-2 \epsilon}}{\Omega_{2-2 \epsilon}}
$$

© The meaning of different variables is as follows:

© The invariant masses $\left(s_{13}, s_{23}\right)$ can be readily expressed in terms of these variables.

The θ_{g} distribution: $C_{F} T_{R} n_{f}$

© Using the web variables the computation is quite manageable:

$$
\begin{aligned}
&\left(\frac{\theta_{g}^{2}}{\sigma_{0}} \frac{d^{2} \sigma^{(2)}}{d \theta_{g}^{2} d z}\right)^{C_{F} T_{R} n_{f}}=C_{F} T_{R} n_{f}\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} z^{-3 \epsilon}\left((1-z)^{2} \theta_{g}^{2}\right)^{-2 \epsilon} \\
&\left(-\frac{2}{3 \epsilon} p_{q q}(z, \epsilon)-\frac{10}{9} p_{q q}(z)-\frac{2}{3}(1-z)\right)
\end{aligned}
$$

4. Due to the angular ordering property built into the splitting function, we can send the invariant mass to infinity:

$$
\max .\left\{s_{12}\right\} \rightarrow \infty
$$

© The virtual corrections of $1 \rightarrow 2$ splitting is quite simple for this colour structure:

$$
\left(\frac{\theta_{g}^{2}}{\sigma_{0}} \frac{d^{2} \sigma_{\text {virt. }}^{(2)}}{d \theta_{g}^{2} d z}\right)^{C_{F} T_{R} n_{f}}=C_{F} T_{R} n_{f}\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} z^{-2 \epsilon}(1-z)^{-2 \epsilon}\left(\theta_{g}^{2}\right)^{-\epsilon}\left(\frac{2}{3 \epsilon} p_{q q}(z, \epsilon)\right)
$$

The θ_{g} distribution: $C_{F} T_{R} n_{f}$

© The final result then reads:

$$
\left(\frac{\theta_{g}^{2}}{\sigma_{0}} \frac{d^{2} \sigma^{(2)}}{d \theta_{g}^{2} d z}\right)^{C_{F} T_{R} n_{f}}=C_{F} T_{R} n_{f}\left(\frac{\alpha_{s}}{2 \pi}\right)^{2}\left(\frac{1+z^{2}}{1-z}\left(\frac{2}{3} \ln \left(z(1-z)^{2} \theta_{g}^{2}\right)-\frac{10}{9}\right)-\frac{2}{3}(1-z)\right)
$$

A One can also compute the ρ distribution $\left(\rho=s_{123} / E^{2}\right)$:

$$
\left(\frac{\rho}{\sigma_{0}} \frac{d^{2} \sigma^{(2)}}{d \rho d z}\right)^{C_{F} T_{R} n_{f}}=C_{F} T_{R} n_{f}\left(\frac{\alpha_{s}}{2 \pi}\right)^{2}\left(\frac{1+z^{2}}{1-z}\left(\frac{2}{3} \ln ((1-z) \rho)-\frac{10}{9}\right)-\frac{2}{3}(1-z)\right)
$$

A We immediately observe a remarkable property. One can move between both distributions using the LO relation:

$$
\rho=z(1-z) \theta_{g}^{2}
$$

Extracting $\mathcal{B}_{2}^{q}(z): C_{F} T_{R} n_{f}$

A To zoom on the NNLL structure, we need to subtract off the LL \& NLL (soft-enhanced) structures:

$$
C_{F} T_{R} n_{f}\left(\frac{\alpha_{s}}{2 \pi}\right)^{2}\left[\frac{2}{1-z}\left(\frac{2}{3} \ln \left((1-z)^{2} \theta_{g}^{2}\right)-\frac{10}{9}\right)-\frac{2}{3}(1+z) \ln \theta_{g}^{2}\right]
$$

© Now we have a purely collinear object:

$$
\mathcal{B}_{2}^{q, n_{f}}\left(z ; \theta_{g}^{2}\right)=\left(\frac{1+z^{2}}{1-z} \frac{2}{3} \ln z-(1+z)\left(\frac{2}{3} \ln (1-z)^{2}-\frac{10}{9}\right)-\frac{2}{3}(1-z)\right)
$$

© Integrating over z one finds:

$$
B_{2}^{q, \theta_{g}^{2}, n_{f}}=C_{F} T_{R} n_{f}\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} \int_{0}^{1} d z \mathcal{B}_{2}^{q, n_{f}}\left(z ; \theta_{g}^{2}\right)=-\gamma_{q}^{\left(2, n_{f}\right)}+C_{F} b_{0}^{\left(n_{f}\right)} X_{\theta_{g}^{2}}
$$

A One can surely play the same game with the ρ distribution:

$$
X_{\rho}=\frac{\pi^{2}}{3}-\frac{7}{2}, \quad X_{\theta_{g}^{2}}=\frac{2 \pi^{2}}{3}-\frac{13}{2}
$$

The θ_{g} distribution: $C_{F}\left(C_{F}-C_{A} / 2\right)$

© Here, the full structure contributes at NNLL.
© The web variables allows an analytic evaluation:

$$
\begin{aligned}
& \left(\frac{\theta_{g}^{2}}{\sigma_{0}} \frac{d^{2} \sigma^{(2)}}{d \theta_{g}^{2} d z}\right)^{(\mathrm{id.} .)}=C_{F}\left(C_{F}-\frac{C_{A}}{2}\right)\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} \\
& \quad\left[\left(4 z-\frac{7}{2}\right)+\frac{5 z^{2}-2}{2(1-z)} \ln z+\frac{1+z^{2}}{1-z}\left(\frac{\pi^{2}}{6}-\ln z \ln (1-z)-\mathrm{Li}_{2}(z)\right)\right]
\end{aligned}
$$

© Thus it is straightforward to extract $\mathcal{B}_{2}^{q}(z)$:

$$
\mathcal{B}_{2}^{q,(\text { id. })}(z)=\left(4 z-\frac{7}{2}\right)+\frac{5 z^{2}-2}{2(1-z)} \ln z+\frac{1+z^{2}}{1-z}\left(\frac{\pi^{2}}{6}-\ln z \ln (1-z)-\mathrm{Li}_{2}(z)\right)
$$

© This function is regular as $z \rightarrow 1$, and its integral reads:

$$
\int_{0}^{1} d z \mathcal{B}_{2}^{q, \text { (id.) }}(z)=\frac{13}{4}-\frac{\pi^{2}}{2}+2 \zeta_{3}
$$

The θ_{g} distribution: non-abelian channel

© The non-abelian channel is the most tedious to compute. The web variables allow for an anlaytic computation:

$$
\begin{aligned}
\left(\frac{\rho}{\sigma_{0}} \frac{d^{2} \sigma^{(2)}}{d \rho d z}\right)^{n a b} & =C_{F} C_{A}\left(\frac{\alpha_{s}}{2 \pi}\right)^{2}\left[(\frac { 1 + z ^ { 2 } } { 1 - z }) \left(-\frac{11}{6} \ln (\rho(1-z))+\frac{67}{18}-\frac{\pi^{2}}{6}\right.\right. \\
+ & \left.\left.\ln ^{2} z+\operatorname{Li}_{2}\left(\frac{z-1}{z}\right)+2 \operatorname{Li}_{2}(1-z)\right)+\frac{3}{2} \frac{z^{2} \ln z}{1-z}+\frac{1}{6}(8-5 z)\right]
\end{aligned}
$$

A We can now obtain the θ_{g} distribution using the LO replacement:

$$
\begin{array}{r}
\mathcal{B}_{2}^{q,(\text { nab. })}\left(z ; \theta_{g}^{2}\right)=-\frac{1+z^{2}}{1-z} \frac{11}{6} \ln z+(1+z)\left(\frac{11}{6} \ln (1-z)^{2}-\frac{67}{18}+\frac{\pi^{2}}{6}\right)+\frac{11}{6}(1-z) \\
\quad+\frac{2 z-1}{2}+\frac{1+z^{2}}{1-z}\left(\ln ^{2} z+\operatorname{Li}_{2}\left(\frac{z-1}{z}\right)+2 \operatorname{Li}_{2}(1-z)\right)
\end{array}
$$

The θ_{g} distribution: non-abelian channel

© To find the $C_{F} C_{A}$ color structure of B_{2}^{q}, we must not forget the identical fermions interference term:

$$
\begin{aligned}
B_{2}^{q, \theta_{g}^{2}, C_{F} C_{A}} & =C_{F} C_{A}\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} \int_{0}^{1} d z\left(\mathcal{B}_{2}^{q,(\text { nab.) })}\left(z ; \theta_{g}^{2}\right)-\frac{1}{2} \mathcal{B}_{2}^{q,(\text { id. })}\left(z ; \theta_{g}^{2}\right)\right) \\
& =-\gamma_{q}^{\left(2, C_{A}\right)}+C_{F} b_{0}^{\left(C_{A}\right)} X_{\theta_{g}^{2}}
\end{aligned}
$$

\uparrow Same consideration holds for the ρ distribution with $X_{\theta_{g}^{2}} \rightarrow X_{\rho}$.

Take home 1: We can define a suitable differential object, which gives rise to the resummation coefficient B_{2}^{q}.

Take home 2: We can move from the θ_{g} distribution to any other observable by using the LO relation.

The scale of the physical coupling

© Let us combine the $C_{F} T_{R} n_{f}$ and non-abelian channels with the LO distribution:

$$
\begin{aligned}
& \left(\frac{\theta_{g}^{2}}{\sigma_{0}} \frac{d^{2} \sigma}{d \theta_{g}^{2} d z}\right)^{\text {tot. }}=\frac{\theta_{g}^{2}}{\sigma_{0}} \frac{d^{2} \sigma^{(1)}}{d \theta_{g}^{2} d z}+\left(\frac{\theta_{g}^{2}}{\sigma_{0}} \frac{d^{2} \sigma^{(2)}}{d \theta_{g}^{2} d z}\right)^{C_{F} T_{R} n_{f}}+\left(\frac{\theta_{g}^{2}}{\sigma_{0}} \frac{d^{2} \sigma^{(2)}}{d \theta_{g}^{2} d z}\right)^{\text {nab. }} \\
& =C_{F} p_{q q}(z)\left[\frac{\alpha_{s}\left(E^{2}\right)}{2 \pi}+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2}\left(-b_{0} \ln \left((1-z)^{2} \theta_{g}^{2}\right)+K_{\mathrm{CMW}}\right)-\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} b_{0} \ln z\right] \\
& \\
& +C_{F} b_{0}\left(\frac{\alpha_{s}}{2 \pi}\right)^{2}(1-z)+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} R^{\mathrm{nab} .}(z)
\end{aligned}
$$

Take home 3: The structure of different pieces:

- Red: the usual soft physical coupling
- Blue: the scale of the coupling beyond the soft limit $z k_{t}^{2}$
- Orange: absorb in a new scheme of the coupling
- Black: a remainder function with a $C_{F} C_{A}$ colour factor

The abelian channel: C_{F}^{2}

© The physics of gluon emissions off the quark is quite distinct different from the gluon decay.

© To zoom in on the NNLL structure, we need to subtract the iterated $1 \rightarrow 2$ limit (strongly ordered): ${ }^{5}$

$$
\mathcal{B}_{2}^{q,(\text { ab. })}\left(z ; \theta^{2}\right)=\left(\frac{\theta^{2}}{\sigma_{0}} \frac{d^{2} \sigma}{d z d \theta^{2}}\right)^{d-\mathrm{r}}-\left(\frac{\theta^{2}}{\sigma_{0}} \frac{d^{2} \sigma}{d z d \theta^{2}}\right)^{\mathrm{s}-\mathrm{o}}+\left(\frac{\theta^{2}}{\sigma_{0}} \frac{d^{2} \sigma}{d z d \theta^{2}}\right)^{\mathrm{r}-\mathrm{v}}, \quad \theta \equiv \theta_{13}
$$

[^3]
The abelian channel: C_{F}^{2}

A Unfortunately, the constraint $\theta_{23}<\theta_{13}$ renders an analytic evaluation impossible.
© Nevertheless, we were able to express the result as a 1d integral:

© We can use the PSLQ algorithm to fit the integral: ${ }^{5}$

$$
\int_{0}^{1} \mathrm{~d} z \mathcal{B}_{2}^{q,(\mathrm{ab} .)}\left(z ; \theta^{2}\right)=\pi^{2}-8 \zeta(3)-\frac{29}{8}
$$

[^4]
Outlook

A One practical side of this work is the ability to resum a host of groomed observables using a QCD-based approach (along the style of ARES).
© The work for gluon jets is underway, and one can ask the same type of questions.
© The most important application is the inclusion in PS.

THANK YOU FOR THE LISTENING!

[^0]: ${ }^{1}$ Dasgupta et. al. (2002.11114), color and spin (2011.10054,2103.16526,2111.01161), G. Salam "The power and limits of parton showers" (https://gsalam.web.cern.ch/gsalam/talks/repo/202109-SLAC-seminar -SLAC-panscales-seminar.pdf)

[^1]: ${ }^{2}$ de Florian \& Grazzini hep-ph/0108273 (see also the references therein)

[^2]: ${ }^{2}$ Banfi, BKE \& Monni 1807.11487, Banfi et. al. 1412.2126
 ${ }^{3}$ See also hep-ph/0407241, Davies \& Striling Nucl.Phys.B 244 (1984)
 ${ }^{4}$ Ellis et. al. "QCD and Collider Physics"

[^3]: ${ }^{5}$ For uniformity, a factor of $\left(C_{F} \alpha_{S} / 2 \pi\right)^{2}$ is stripped from the RHS.

[^4]: ${ }^{5}$ We thank Pier Monni for letting us use his routine.

